上の図のように、9色に塗り分けられた9×9のマス目があります。このマス目に、次の【条件】を満たすように、1マスに1つずつ、1~9の数字を入れていきます。
【条件】
⑴ 同じ列にあるマスには、同じ数字は2つ以上入らない。
⑵ 同じ色で塗られたマスには、同じ数字は2つ以上入らない。
このとき、A~Dのマスにあてはまる数字の合計を答えてください。
半角数字で入力してください。
図の条件の下で,半円の直径 $x$ を求めてください.
$x^2$ の値を半角数字で解答してください.
【補助線主体の図形問題 #080】
今週も補助線の威力が感じられる図形問題を用意しました。若干面倒な計算が待っているので、紙&ペンがあると安心かもしれません。存分に補助線による試行錯誤をお楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #079】
先週今週と2週続けて内心と傍心をテーマにした問題をお送りしています。補助線次第では暗算可能です。挑戦をお待ちしております!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #078】
今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。
半角数字で解答してください。
図の条件の下で、青で示した角の大きさ $x$ を求めてください。
$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。