$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$
次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表
数列${a_n}$を以下のように定義する。
$$
\begin{eqnarray}
a_1&=&\int_0^1dx\\
a_{n+1}&=&\int_0^{a_n+1}x^{a_n}dx
\end{eqnarray}
$$
このとき、$\log_{10}(a_5)$の値を求めよ。
$(x,y)$を$x^2+y^2=1,x\geqq0,y\geqq0$を満たすようにとる。
$z=(x,y)\cdot(\frac1{\sqrt2},\frac1{\sqrt2})$としたとき、以下の値を求めよ。
$$\int_0^1zdx$$
半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:
四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$
このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。
答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。
数列 {${a_n}$} を以下のように定義する。
$$ a_{n+3} = a_{n+2}+ a_{n+1} - a_n,\quad a_1 = \alpha,\ a_2 = \beta, a_3 = \gamma $$
ただし、$\alpha,\ \beta,\ \gamma\ $は実数である。
この問題について感想をくれると嬉しいです。例えば、以下の観点でコメント・批評があると嬉しいです。