数学の問題一覧

カテゴリ
以上
以下

そこ(底)にn⁉️

MACHICO 自動ジャッジ 難易度:
2時間前

0

$$\displaystyle \lim_{n\to\infty}\log_{e^{n}}\,{}_{2n}\mathrm{C}_{n}$$を求めてください。

解答形式

半角で数字のみ入力してください。
・答えが分数になる場合は分母と分子の和を答えてください。
(例: $\dfrac{1}{2}$ → $3$を入力する )
・答えに$\pi$を含む場合は$\pi=3$として答えてください。
(例: $2\pi$ → $6$を入力する,$\dfrac{\pi}{2}$ → $5$を入力する )
・答えに$\log$を含む場合は$a\log b$となる場合も$\log b^a$として真数のみ答えてください。
(例: $2\log 2$ → $4$を入力する )
・上記の例に当てはまらない場合は$0$と入力してください。($0$に収束する場合も$0$と入力します)

初めて生やした問題

imhetep 自動ジャッジ 難易度:
1日前

1

問題文

鋭角三角形ABCにおいてAからBCに下ろした垂線の足をDとし, 三角形ABCの外接円と直線ADとの交点のうちAでない方をEとする.
外接円の中心をOとしたとき, 次が成り立った.

OD ⊥ BE
BD = 2, DC = 2√7

外接円の半径が4であるとき, 三角形ABCの面積を求めてください.

解答形式

正整数 a, bを用いてa + √bと表せるので, a + b の値を解答してください.


問題文

二等辺三角形ABCがあり、AB=AC=xcmである。また、頂角は150°である。下の画像の式が二等辺三角形ABCの値と等しくなった時、xの数値を求めなさい。

分かりずらい方へ

−{√(x^8/x^4)+√(x^8/x^2)}/(x^3/x+x^5/x^2)+11/2-(x/√x)^2+8x^2÷4x√x+x^2×x/(√x)^6+481/26-2/√x×(x/√x)^2+2x

解答形式

x=は必要ありません。数値のみを記入してください
(例) 810

幾何

roku_omc 自動ジャッジ 難易度:
4日前

3

問題文

$AB=AC$ である直角二等辺三角形 $ABC$ があり,外接円の劣弧 $AC$ 上に点 $D$ をとります.すると $$AB=\sqrt{666},CD=6$$ が成り立ちました.$BD$ に $A$ から下ろした垂線の足を$H$ とした時,$AH\times BH$ の値を求めて下さい.

解答形式

半角の数字で答えて下さい.

回文数

Clea 自動ジャッジ 難易度:
5日前

10

問題文

偶数桁の回文数のうち、素数であるものをすべて求めよ。

解答形式

答えの総和を解答してください。

P2

Germanium32 自動ジャッジ 難易度:
5日前

22

問題文

三角形ABCの
Pを線分AB上にABを2:3に内分するように、
Qを直線BC上にBCを1:2に外分するように、
Rを直線AC上に取ったところ、
P,Q,Rは一直線上にありました
この時、AR/CRの値を求めてください。

解答形式

解答する値は互いに素な自然数(a,b)を用いてa/bと表せるので、a+bの値を求めてください

定積分

yaguwa 自動ジャッジ 難易度:
13日前

4

問題文

次の定積分の値を求めよ.
$$
\int_{-\frac{π}{2}}^{\frac{π}{2}}\frac{\cos x}{1+e^{\sin x}}dx
$$

解答形式

半角数字で答えのみ解答してください.
答えが分数となる場合,例えば$-\frac{11}{2}$などとなる場合は-11/2のように解答してください.

13日前

2

問題文

円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.

解答形式

半角数字で解答してください.

RMC009 p1

Mid_math28 自動ジャッジ 難易度:
14日前

4

問題文

$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ

解答形式

$BC^2$ は正の整数値になるので, その値を半角で解答してください

西暦114514年の東大理系数学大問1

kikutaku 採点者ジャッジ 難易度:
14日前

0

問題文

$y=xe^x$の第$n$次導関数を$y^{(n)}$とし,

そのグラフの変曲点の$y$座標を$Y_{n+1}$とおく。

$\sum_{k=1}^{\infty} Y_k$

を求めよ。ただし,答えのみ記せ。


問題文


「正方形と正三角形 Part1」に続いており、誘導のようになっているため、Part1を解いていない方は先にPart1を解いておくことをお勧めします♪
誘導なしでもデキルケド、、、

四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

SRとPBの交点をTとする。SBはSTの何倍であるか答えなさい。

解答形式

◯倍のような「倍」はつけずに数字や記号のみで答えてください。√、+、-などを使う場合はカタカナで表記してください。2+√2のように、√の数よりも先に2などの整数を答えてください。√同士であれば、中身の数が少ない順に答えなさい。
√→ルート
+→プラス
-→マイナス
(例)3
  2ルート3
  3マイナスルート2プラスルート3

16日前

4

問題文


四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

角RBCの大きさを求めなさい

解答形式

角度の大きさは数字のみで回答してください
(例)180
  90 など