$$\displaystyle \lim_{n\to\infty}\log_{e^{n}}\,{}_{2n}\mathrm{C}_{n}$$を求めてください。
半角で数字のみ入力してください。
・答えが分数になる場合は分母と分子の和を答えてください。
(例: $\dfrac{1}{2}$ → $3$を入力する )
・答えに$\pi$を含む場合は$\pi=3$として答えてください。
(例: $2\pi$ → $6$を入力する,$\dfrac{\pi}{2}$ → $5$を入力する )
・答えに$\log$を含む場合は$a\log b$となる場合も$\log b^a$として真数のみ答えてください。
(例: $2\log 2$ → $4$を入力する )
・上記の例に当てはまらない場合は$0$と入力してください。($0$に収束する場合も$0$と入力します)
三角形ABCの
Pを線分AB上にABを2:3に内分するように、
Qを直線BC上にBCを1:2に外分するように、
Rを直線AC上に取ったところ、
P,Q,Rは一直線上にありました
この時、AR/CRの値を求めてください。
解答する値は互いに素な自然数(a,b)を用いてa/bと表せるので、a+bの値を求めてください
円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.
半角数字で解答してください.
$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ
$BC^2$ は正の整数値になるので, その値を半角で解答してください

「正方形と正三角形 Part1」に続いており、誘導のようになっているため、Part1を解いていない方は先にPart1を解いておくことをお勧めします♪
誘導なしでもデキルケド、、、
四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。
SRとPBの交点をTとする。SBはSTの何倍であるか答えなさい。
◯倍のような「倍」はつけずに数字や記号のみで答えてください。√、+、-などを使う場合はカタカナで表記してください。2+√2のように、√の数よりも先に2などの整数を答えてください。√同士であれば、中身の数が少ない順に答えなさい。
√→ルート
+→プラス
-→マイナス
(例)3
2ルート3
3マイナスルート2プラスルート3

四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。
角RBCの大きさを求めなさい
角度の大きさは数字のみで回答してください
(例)180
90 など