円$C_1:x^2+(y−\sqrt{6})^2=2$及び円$C_1$と$x$軸について対称な円$C_2$をとる。さらに、2点$(0,\sqrt{6}−\sqrt{2}),(0,−\sqrt{6}+\sqrt{2})$を通り$x$軸に垂直で、原点を中心とする円$C_3$をとり、円$C_2$の中心を通り$xy$平面に垂直な直線を$l$とする。円$C_3$を直線$l$周りに$360°$回転させてできる立体の体積を求めよ。
正整数$a,c,e$と平方因子をもたない正整数$b,d$を用いて$(a\sqrt{b}−c\sqrt{d})π^e$と表せるので、$a+b+c+d+e$を解答してください。
以下の条件を満たすような正整数$a,b,c$が存在するので,そのような$a,b,c$の組を$1$つ答えてください.
・ある奇素数$p$,正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p^N$で割り切れない.
$(a,b,c)$と,この組に対して条件を満たす$p$を$1$つ用いて「$(a,b,c)$、条件を満たす$p$は~~」というように解答してください.
・誤答の場合$0$点.多少の書式の違いは認めます.
・正答の場合,$p_k$を$k$番目に小さい奇素数としたときに任意の$k=1,2,...s$に対して「ある正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p_k$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p_k^N$で割り切れない.」が成り立つような$s$の参加者全体中の最大値を$x$,あなたの解答に対する値を$y$としたとき$\dfrac{100y}{x}$以上の整数の内最小のものをあなたの得点とします.ただしこの値が$0$に等しい場合は$1$点とします.
・複数の提出があった場合は最後の提出のみを判定します.
純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。
正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。
$$f(\frac{n}{m})=(m−2)n$$
必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$
を用いてよい。
$AB\lt AC$ なる三角形 $ABC$ において,外心を $O$,内心を $I$ とします.また,三角形 $ABC$ の内接円と辺 $BC$ の接点を $D$ とします.さらに,$I$ を通り直線 $BC$ に平行な直線と直線 $AD$ との交点を $P$ とすると,以下が成立しました.
・直線 $AD$ と直線 $IO$ は直交する.
・$AP=15,DP=8$
$AI$ の長さの $2$ 乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せます.
ところで,$\cal{AB}=a,\cal{AC}=(b\ \mathrm{mod}\ a)$ なる三角形 $\cal{ABC}$ の内心を $\cal{I}$,内接円 $\omega$ と辺 $\cal CA,AB$ との接点をそれぞれ $\cal E,F$ とします.三角形 $\cal ABE$ の外接円と三角形 $\cal ACF$ の外接円が $\omega$ 上で交わっているとき,辺 $\cal BC$ の長さを求めてください.ただし,求める長さは,正整数 $c,d$ を用いて $c-\sqrt{d}$ と表せます.ただし,$(b\ \mathrm{mod}\ a)$ で $b$ を $a$ で割った余りを表します.
ところで,$n=d-2c-4$ とします.Furinaくんは,以下のような問題Xを作りましたが,数値設定に悩んでいます.
問題X:$XY=n,YZ=p,ZX=q$ なる三角形 $XYZ$ の内心を $ぴ$,$\angle X$ 内の傍心を $か$ とします.$ぴか$ の長さを求めてください.
Furinaくんは,解答形式を奇麗にしたいため,$ぴか^2$ が正整数になるようにしたく,さらに $ぴか^2$ が $p$ で割り切れないようにしたいといいます.このようなことが可能な奇素数の組 $(p,q)$ すべてについて,$p+q$ の総積を求めてください.
追記 $\angle A$ 内の傍心とありましたが,これは $\angle X$ 内の傍心のことです.現在は訂正されています.
半角整数値で解答してください.
鋭角三三三角形 $ABCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$ において,その外心を $O$,垂心を $H$,内接円を $\omega$ としたとき,$O,H$ はともに $\omega$ 上にあり,$\omega$ の半径は $1$ であった.
この条件下で線分 $OH$ の長さとしてありうる値の総積を $xxxxxxxxxx$ とする.$xxxxxxxxxx$ の最小多項式を $P$ として,$|P()|$ の値を解答せよ.ただし,$xxxxxxxxxx$ が最小多項式をもつことが保証される.
半角数字を用いて解答せよ.解答すべき値が $$ でないことは保証される.
$$\sum^{100}_{k=1}\left\lfloor \sqrt[3]{1001001-k^3}\right \rfloor$$
を $2$ で割った余りはいくつですか?
非負整数で解答してください。
この問題の提出制限は $1$ 回です。