数学の問題一覧

カテゴリ
以上
以下

定積分

yaguwa 自動ジャッジ 難易度:
2日前

2

問題文

次の定積分の値を求めよ.
$$
\int_{-\frac{π}{2}}^{\frac{π}{2}}\frac{\cos x}{1+e^{\sin x}}dx
$$

解答形式

半角数字で答えのみ解答してください.
答えが分数となる場合,例えば$-\frac{11}{2}$などとなる場合は-11/2のように解答してください.

3日前

0

問題文

円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.

解答形式

半角数字で解答してください.

RMC009 p1

Mid_math28 自動ジャッジ 難易度:
4日前

4

問題文

$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ

解答形式

$BC^2$ は正の整数値になるので, その値を半角で解答してください

西暦114514年の東大理系数学大問1

kikutaku 採点者ジャッジ 難易度:
4日前

0

問題文

$y=xe^x$の第$n$次導関数を$y^{(n)}$とし,

そのグラフの変曲点の$y$座標を$Y_{n+1}$とおく。

$\sum_{k=1}^{\infty} Y_k$

を求めよ。ただし,答えのみ記せ。


問題文


「正方形と正三角形 Part1」に続いており、誘導のようになっているため、Part1を解いていない方は先にPart1を解いておくことをお勧めします♪
誘導なしでもデキルケド、、、

四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

SRとPBの交点をTとする。SBはSTの何倍であるか答えなさい。

解答形式

◯倍のような「倍」はつけずに数字や記号のみで答えてください。√、+、-などを使う場合はカタカナで表記してください。2+√2のように、√の数よりも先に2などの整数を答えてください。√同士であれば、中身の数が少ない順に答えなさい。
√→ルート
+→プラス
-→マイナス
(例)3
  2ルート3
  3マイナスルート2プラスルート3

6日前

2

問題文


四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

角RBCの大きさを求めなさい

解答形式

角度の大きさは数字のみで回答してください
(例)180
  90 など

角APDについて Part2

obenben 自動ジャッジ 難易度:
6日前

1

問題文

長方形ABCDがあり、AB=X cm、AD=Ycmとする。(X:Y=1:2)
CB=CEとなるよう、AD上に点Eをとる。
点Pは頂点Bから頂点Cまで動く。
CEとPDの交点をSとする。
このとき、三角形CBE相似三角形EPSになるような場所に点Pがあるとき、次の(ア)〜(ウ)にはいる数字を答えなさい。

BP:PC=(ア):√(イ)+(ウ)

解答形式

ア、イ、ウの順に、間に点を入れながら答えてください。1行で答えること。
(例)
1、2、3

角APDについて Part1

obenben 自動ジャッジ 難易度:
6日前

0

問題文

長方形ABCDがあり、AB=Xcm、AD=Ycmである。 (X <Y) 点Pは頂点Bを出発して頂点Cまで動く。
途中、角APDが直角になった時が2回あった。
ここで、1回目に直角になった時の点Pの位置をQとし、2回目に直角になった時の点Pの位置をRとする。
BQ=2cm、QR=4cmである時、X、Yはそれぞれ何cmだと考えられるか?

解答形式

下の形式のようにX、Yは大文字、cmは小文字で、2行構成で答えなさい。ただし√が含まれる場合はカタカナで答えなさい。
√2→ルート2
5√17→5ルート17
(例)
Xcm=◯◯cm
Ycm=◯◯cm

整数問題

smasher 自動ジャッジ 難易度:
10日前

5

問題文

$$\dfrac{m!}{n!}=mn$$を満たす非負整数の組$(m,n)$について、$m+n$の総和を求めてください。

解答形式

半角数字で入力してください。


問題文

内角がすべて90°となる三角形を構成せよ。

解答形式

文章でまとめなさい。

13日前

0

√13ー2√11を√を使用せずに答えなさい

解答形式

中学生までの知識のみを使用し解となぜその解になるのか示しなさい

300-400G

Mid_math28 自動ジャッジ 難易度:
14日前

1

問題文

鋭角三角形 $ABC$ の垂心を $H$ $,$ $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とし $,BC$ の中点を $M$ とする$.$ 直線 $AM$ 上に $\angle APH=90 ^。$ となる点 $P$ をとり$,$ 直線 $DE$ と直線 $FP$ の交点を $Q$ とする $.$
また $,$ 三角形 $AHC$ の外接円と三角形 $ABM$ の外接円との交点を$R$ $,$ 三角形$AHC$の外接円と線分 $DE$ の交点を$S$ とする $.$
$$AM:AS=\sqrt{3}:\sqrt{2}  AQ=11  QR=7$$
が成り立つとき, $BC$ の長さを求めよ.

解答形式

$BC^2$ は正の整数値になるので,その値を半角で解答してください.