数学の問題一覧

カテゴリ
以上
以下

回文数

Clea 自動ジャッジ 難易度:
4日前

8

問題文

偶数桁の回文数のうち、素数であるものをすべて求めよ。

解答形式

答えの総和を解答してください。

定積分

yaguwa 自動ジャッジ 難易度:
12日前

4

問題文

次の定積分の値を求めよ.
$$
\int_{-\frac{π}{2}}^{\frac{π}{2}}\frac{\cos x}{1+e^{\sin x}}dx
$$

解答形式

半角数字で答えのみ解答してください.
答えが分数となる場合,例えば$-\frac{11}{2}$などとなる場合は-11/2のように解答してください.

西暦114514年の東大理系数学大問1

kikutaku 採点者ジャッジ 難易度:
14日前

0

問題文

$y=xe^x$の第$n$次導関数を$y^{(n)}$とし,

そのグラフの変曲点の$y$座標を$Y_{n+1}$とおく。

$\sum_{k=1}^{\infty} Y_k$

を求めよ。ただし,答えのみ記せ。


問題文

内角がすべて90°となる三角形を構成せよ。

解答形式

文章でまとめなさい。

極限 その2

Auro 採点者ジャッジ 難易度:
36日前

0

問題文

関数
$$
y = x \log(1 + x)\quad (x \ge 0)
$$
の逆関数を
$$
y = f(x)\quad (x \ge 0)
$$
とする.

また,関数 $g(x)$を
$$
\begin{aligned}
g(x+1) &= g(x), \\
\int_{0}^{1} g(x)\,dx &= 1
\end{aligned}
$$
を満たす連続関数とする.

正の整数 $n$ に対して,次の極限値を求めよ.
$$
\lim_{n \to \infty}
\int_{0}^{e-1} f(x)\,g(nx)\,dx
$$

解答形式

例)ひらがなで入力してください。

桁数計算

LIVEA 自動ジャッジ 難易度:
36日前

4

問題文

$$18^{223}+5^{410}$$の桁数を求めよ。ただし、$log_{10}2=0.3010,log_{10}3=0.4771$とする。

解答形式

数字だけで解答しなさい。

37日前

4

${}$ 西暦2026年問題第9弾です。24時を回って、日付が変わってしまいました。僕の西暦問題では珍しく代数・解析分野からの出題となっています。さらにいうと、前回の問題と同じく$2026$を$2+2\sqrt{6}$と解釈する強引さを見せています。そんな珍しさと強引さを味わいながらお楽しみください。

解答形式

${}$ 解答は求める解の個数をそのまま半角で入力してください。
(例)109個 → $\color{blue}{109}$
 なお、解が存在しない(不能)場合は$\color{blue}{0}$と、解が無数に存在する(不定)場合は$\color{blue}{\mathrm{inf}}$と入力してください。


問題

次の式のkの取りうる値を求めよ。
ただし、根号を用いる場合は (√2)+3 のように
半角括弧で囲って答えること。
※「√」は全角ローマ字打ちで「るーと」と
打つと出たものとする。
$sin^2θ+2cosθ-4<2cos^2θ-sinθ+k$


問題文

座標平面上に点 P_k, Q_k を以下の規則に従ってとる。各試行においてサイコロを投げ、出た目を m = {1, 2, 3, 4, 5, 6} とする。
• 試行回数 n が奇数 (n = 2k - 1) のとき:
点 P_k (cos 2π/m, sin 2π/m)
• 試行回数 n が偶数 (n = 2k) のとき:
点 Q_k (cos -2π/m, sin -2π/m)
(1) n = 1, 2, 3, 4 回目のサイコロの目が順に 1, 4, 3, 6 であったとき、4点 P_1, Q_1, P_2, Q_2 が作る四角形の面積 S を求めよ。
(2) n = 4 のとき、出現した4点が正方形となる確率を求めよ。
(3) n 回の試行で得られた点集合を V_n = {P_1, Q_1, ..., P_k, Q_k} (ただし n = 2k または 2k - 1) とする。V_n から異なる4点を選んで作れる四角形の面積を S とし、同一の V_n 内における S の最大値を Smax、最小値を Smin とする。
このとき、比 R = Smax / Smin について、以下の問いに答えよ。
(i) 出目の組み合わせによって、比 R が最大値を取り得る最小の試行回数 N を求めよ。
(ii) n = N のとき、R が最大値をとる確率 P を求めよ。

解答形式

記述もお願いします


${}$ 西暦2026年問題第5弾です。僕の西暦問題では珍しく多項式がテーマです。数の大きさに怯むかもしれませんが、上手く処理すれば単純な計算で求まります。ぜひ挑戦してください。

解答形式

${}$ 解答は$x$の値をそのまま半角で入力してください。「$x=$」の記載は不要です。
(例)$x=$105 → $\color{blue}{105}$


問題文

$n,kをn≠kで3以上の自然数とする。$
$このとき、正n角形において、その内部をn個の正k角形で重複なく、また隙間なく敷き詰められるような(n,k)を求めよ.$

解答形式

(〇,◇)
記号も数字もすべて半角でお願いします。

Happy New Year!

noname 自動ジャッジ 難易度:
46日前

13

問題文

$N=p^q-pq$とします。$N-1$が平方数、$p,q,\frac{N}{2},N+1,N+3$がいずれも素数になるような$N$としてありうる最小の値を求めてください。

解答形式

半角整数で答えてください。