以下の条件を満たすような正整数$a,b,c$が存在するので,そのような$a,b,c$の組を$1$つ答えてください.
・ある奇素数$p$,正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p^N$で割り切れない.
$(a,b,c)$と,この組に対して条件を満たす$p$を$1$つ用いて「$(a,b,c)$、条件を満たす$p$は~~」というように解答してください.
・誤答の場合$0$点.多少の書式の違いは認めます.
・正答の場合,$p_k$を$k$番目に小さい奇素数としたときに任意の$k=1,2,...s$に対して「ある正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p_k$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p_k^N$で割り切れない.」が成り立つような$s$の参加者全体中の最大値を$x$,あなたの解答に対する値を$y$としたとき$\dfrac{100y}{x}$以上の整数の内最小のものをあなたの得点とします.ただしこの値が$0$に等しい場合は$1$点とします.
・複数の提出があった場合は最後の提出のみを判定します.
三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.
$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)
2018年3月の大学への数学「読者と作るページ」に掲載された問題です。
(1) $\sin{2x} = 2\sin{x}\cos{x}$を用いて, $\displaystyle\lim_{t\to +0}\int_{t}^{1} \log{\sin{\frac{\pi}{2}\theta}}\, d\theta = -\log{2}$を示せ(極限値の存在は認めてよい). これを用いて$\displaystyle\lim_{t\to + 0}\int_{t}^{1} \dfrac{\theta\cos{\frac{\pi}{2}\theta}}{\sin{\frac{\pi}{2}\theta}} \, d\theta$ を求めよ.
(2) $\displaystyle\lim_{n\to \infty} \left(\int_{\frac{1}{n}}^{1} \sqrt[n]{\sin{\dfrac{\pi}{2}\theta}} \, d\theta\right)^{n}
$を求めよ.
電卓などを利用することで, (1)の答えを $L_1$ とし, (2)の答えを $L_2$ とするとき, $L_1 + L_2$ の値を小数点第5位まで表示したものを回答してください. (例:0.1234567なら0.12345と解答する)
$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。
極限値
$$
\lim_{n \to \infty} \dfrac{K_{n}}{D_{n}}
$$
を求めよ。
電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)
本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.
$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}
(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.
(2) の解答を入力してください((1)は解答参照)
本問は大学への数学2025年2月号6番に掲載された自作問題です.
1枚の硬貨を8回投げる。硬貨を1枚投げ, 表が出る確率, 裏が出る確率はともに$\frac{1}{2} $である。このとき、$k$回目(1$≦$$k$$≦$8)に表が出たら$X_{k}$=1, 裏が出たら$X_{k}$=0として, $X_{1}$, $X_{2}$,・・・, $X_{8}$を定める。
$$\sum_{k=1}^{6}X_{k} X_{k+1} X_{k+2}=0$$となる確率を求めよ。
互いに素な自然数$a,b$を用いて, 求める確率は$\frac{a}{b} $と表されるので、$a+b$の値を入力してください。
$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.
半角整数値で解答してください.
垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。
線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。
求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。
$\ x,\ a,\ b,\ c,\ d\ $は実数であるとする。$xy\ $平面上に以下のグラフを書く。
$$ y = x^4 + ax^3 + bx^2 +cx +d $$
このとき、このグラフにおいて極値を取る$\ x\ $座標が3つ存在する条件を導け。
ただし、その3つは互いに異なるものとする。
入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。
解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。
問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。
例えば、以下のような観点でコメントしてくれると嬉しいです。
(もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)