数学の問題一覧

カテゴリ
以上
以下

@virtue_harbor

公開日時: 2025年11月8日15:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

絶対値 範囲分け

問題文

x≧0, y≧0, x|2x+y|+y|x-2y|=2を満たすとき、x+2yのとりうる値の最大値と最小値を求めよ。また、そのときのx,yの値も求めよ。

解答形式

一行目に最小値、二行目に最大値を書いてください。
x+2yは、x=○○, y=□□のとき、最小値△
x=●●, y=■■のとき、最大値▲
のように答える。

MACHICO

公開日時: 2025年11月1日12:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

奇数回で当たる確率が $\dfrac{2}{n}$,偶数回で当たる確率が $\dfrac{3}{n}$のくじを$n$回引いた時,少なくとも1回当たる確率を $P_n$,1回以上当たった時,最初の当たりが奇数回で起こる確率を $Q_n$ とするとき,$\displaystyle\lim_{n\to\infty}Q_n$ を求めてください.

解答形式

求める値は互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので, $a+b$ を解答してください. 数字は半角で入力してください.

tsukemono

公開日時: 2025年10月30日21:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


第1問

次の文章中の空欄(①)に当てはまるものとしてもっとも適切なものを、ア~エのうちから1つ選び、記号で答えよ。

$a,b,c$を実数とする。$ax^2+bx+c=0$であることは、$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$であるための(①)。

ア 必要十分条件である
イ 必要条件であるが十分条件でない
ウ 十分条件であるが必要条件でない
エ 必要条件でも十分条件でもない

MACHICO

公開日時: 2025年10月30日14:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,

$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$

の最大値を求めてください.

解答形式

求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.

kiwi1729

公開日時: 2025年10月29日18:58 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

漸化式

問題文

数列$\ a_{n}$は以下のように定義されます.
$$a_{1}=1,a_{n+1}=2a_{n}+2\cos\frac{n\pi}{3}$$
このとき,$$\displaystyle\sum_{k=1}^{50000}a_{k}$$の正の約数の個数を解答してください.

解答形式

整数で解答してください.

Americium243

公開日時: 2025年10月28日20:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

正の整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_1=2, a_2=-4, a_{n+2}-2a_{n+1}+4a_n=0}$$
を満たしている。
${|a_{2025}|}$ の正の約数の個数を求めよ。

解答形式

整数で入力してください

Americium243

公開日時: 2025年10月28日19:50 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

整数 ${n}$ に対して定義される数列 ${a_n}$ が
$${a_0=2, a_1=4, a_{n+2}-4a_{n+1}+a_n=0}$$
を満たしている。
$${a_{2026}-a_{-2026}}$$
を求めよ。

解答形式

整数で入力してください

tsukemono

公開日時: 2025年10月28日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


第5問

実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。

tsukemono

公開日時: 2025年10月28日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


第4問

$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$
$0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。

tsukemono

公開日時: 2025年10月28日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


第3問

$t$が実数全体を動くとする。
このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。

解答する際の注意

答えの図形が正確に分かるようにお答えください。

tsukemono

公開日時: 2025年10月28日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


第7問

次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$

tsukemono

公開日時: 2025年10月28日0:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


第1問

次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。
数列{$a_{n}$}を次のように定める。
$$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は

$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$
である。
また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。