公開日時: 2025年12月9日23:39 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください
公開日時: 2025年12月5日13:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。
最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。
(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。
$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。
半角数字・記号で解答。
公開日時: 2025年12月5日1:32 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$
$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください
公開日時: 2025年11月27日10:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞)
に対して実数𝑝,𝑞が
𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。
このとき3点A,B,Cを通る上に凸な二次関数が
存在しないような点Cの取りうる範囲の面積を求めよ。
半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。
回答の際に一文字目に計算記号が来ないようにしてください。
(ダメな例)-2√2+π→(良い例)π-2√2
また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e
公開日時: 2025年11月25日18:14 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
公開日時: 2025年11月23日19:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$p$ を $3$ 以上の素数とする。
$f(x),\ g(x)$ はいずれも整数係数の多項式である。
$f(x),\ g(x)$ が次の条件を全て満たすとき,
存在しうる $f(x),\ g(x)$ の組み合わせは何通りあるか。
$(a)$ $f(g(x)) = x^{p^p} + 1$
$(b)$ $f(0)$ が $p$ で割り切れる。
$(c)$ $1 \le g(0) \le p^{p}$
pを用いて解答。答えのみの解答で構いません。
公開日時: 2025年11月21日23:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?
整数で解答してください
公開日時: 2025年11月20日20:36 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。
公開日時: 2025年11月20日20:25 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$r$ を正の実数とし,自然数 $n$ に対して,整式 $f_n(x)$ を
$$
f_n(x)=\sum_{k=1}^{n}\frac{x^{k}}{r^{k}}
$$
とする。また,整式 $f_n(x)$ を整式 $x^{2}-x-1$ で割った余りを $a_n x + b_n$ とする。
$(1)$ 数列 {${a_n}$},{${b_n}$}の一般項をそれぞれ求めよ。
$(2)$ 数列 {${a_n}$},{${b_n}$} がいずれも $0$ でない実数に収束するために正の実数 $r$ が満たすべき条件を求めよ。
また,そのときの極限値をそれぞれ $r$ を用いて表せ。
特に指定しません。
公開日時: 2025年11月20日20:10 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$O$ を原点とする座標空間において,点 $(0,0,1)$ を中心とする半径 $1$ の球面を $S$ とする。
$S$ 上の $x>0,\ y>0,\ z>1$ を満たす部分に点 $P$ をとり,$P$ において球面 $S$ と接する平面を $L$ とする。
また,平面 $L,\ xy$ 平面,$yz$ 平面,$zx$ 平面によって囲まれる部分を $D$ とする。
$D$ の全ての面に内接する球の半径を $r$ として,$r$ のとりうる値の範囲を求めよ。
$r$ はrで表す。根号は「√」を用いる。その他記号は全て半角で入力。
(例) √3<r<5 √3<=r<=5
公開日時: 2025年11月20日19:46 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
平面上に $2$ 本の平行な直線 $l_1,\ l_2$ がある。
ある $2$ 以上の整数の組 $(x, y)$ に対して,直線 $l_1$ 上に互いに異なる $x$ 個の点 $A_1, A_2, \dots, A_x$,直線 $l_2$ 上に互いに異なる $y$ 個の点 $B_1, B_2, \dots, B_y$ をとり,
点 $A_1, A_2, \dots, A_x$ のそれぞれに対して,点 $B_1, B_2, \dots, B_y$ のいずれか $1$ 点を選んで線分で結ぶ(合計 $x$ 本の線分を引く)。また,引かれた $x$ 本の線分同士の交点のうち
直線 $l_2$ 上にない交点の個数を $C(x, y)$ と表す。
(例えば, $C(2, 2)$は$0,1$のいずれかの値をとり、$C(3, 2)$は$0,1,2$のいずれかの値をとる。また,直線 $l_2$ 上にない交点が存在しない場合,$C(x, y)=0$ とする。)
ただし,直線 $l_2$ 上にない点が,$3$ 本以上の線分の同一の交点になることはないものとする。
$(1)$ $C(5, 4)=0$ を満たす $5$ 本の線分の引き方の総数を求めよ。
$(2)$ $C(5, 4)=1$ を満たす $5$ 本の線分の引き方の総数を求めよ。
$(3)$ $C(5, 4)=2$ を満たす $5$ 本の線分の引き方の総数を求めよ。
$(4)$ $C(5, 4),\ C(8, 5)$ の最大値をそれぞれ求めよ。
$(5)$ $n$ を $2 $以上の整数,$m$ を $n$ 以上 $2n$ 以下の整数とする。
$C(m, n)$ の最大値を $m, n$ を用いて表せ。
特に指定しません。