公開日時: 2024年3月16日12:15 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
x=\sqrt{3}+\frac{1}{\sqrt3},y=\sqrt{3}-\frac{1}{\sqrt3}のとき\\
$$
$$
(ⅰ)x+y
$$
$$
(1)\sqrt{3}(2)2\sqrt{3}(3)\sqrt{5}(4)2\sqrt{5}
$$
$$
(ⅱ)xy
$$
$$
(1)\frac{2}{3}(2)\frac{5}{3}(3)\frac{8}{3}(4)\frac{11}{3}
$$
$$
(ⅲ)x^3+y^3
$$
$$
(1)2\sqrt{3}(2)4\sqrt{3}(3)6\sqrt{3}(4)8\sqrt{3}
$$
$$
(ⅳ)x^5+y^5
$$
$$
(1)271\sqrt{3}-\frac{15}{2}(2)272\sqrt{3}-\frac{16}{3}(3)273\sqrt{3}-\frac{17}{4}(4)274\sqrt{3}-\frac{19}{5}
$$
$$
について答えて下さい。
$$
公開日時: 2024年3月16日7:44 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
-x+(3b+1)i=(a+1)x+\begin{eqnarray}f(i)&=&{2bi}^6\end{eqnarray}\\について答えて下さい。
$$
$$
(ⅰ) f'(i)を答えて下さい。
$$
$$
(1)10b{i}^2(2)11b{i}^2(3)12b{i}^2(4)13b{i}^2
$$
$$
(ⅱ)a,bの値を答えて下さい。
$$
$$
(1)\begin{cases}3\\\frac{1}{2}\end{cases}
(2)\begin{cases}2\\\frac{1}{5}\end{cases}
(3)\begin{cases}3\\\frac{1}{7}\end{cases}
(4)\begin{cases}2\\\frac{1}{9}\end{cases}
$$
公開日時: 2024年3月15日21:28 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
次の$x,y$についての連立方程式を実数の範囲で解いてください。
$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$
解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。
公開日時: 2024年3月15日20:45 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。
解をすべて答えてください。値の小さい順に1行目から入力してください。
なお,解答にあたって,特殊な数式は次のように入力してください。
対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m}
指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m}
分数:$\frac{a}{b}$ = \frac{a}{b}
公開日時: 2024年3月15日15:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は
$$
z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...)
$$
を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
公開日時: 2024年3月15日15:48 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$\displaystyle \frac{xy}{2x+y}=\frac{1}{y}$ を満たす整数 $(x,y)$ の組をすべて求めよ。
各組を1行ごとに入力してください。ただし,$x$ の値が小さい順に1行目から入力し,さらに $x$ の値が同じ場合は,$y$ の値が小さい順に入力してください。
例)答えが$(x,y)=(0,1),(0,2),(-1,2)$ のとき
(1行目)-1,2
(2行目)0,1
(3行目)0,2