$0.017$$<$$tan1°$$<$$0.018$
を示せ。
大学数学なし
自己流ですが、解説を付けているのでぜひ挑戦してみてください
$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、
$$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$
が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。
$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。
$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。
解を半角1スペースおきに小さい順に並べてください
n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
$a,b,c\ (a\neq0)$ を実数とする.放物線 $y=ax^2+bx+c$ が,$3$ 直線
$\ y=x-2,\ y=-3x+2,\ y=7x-3$
の全てと接するとき,$a,b,c$ の値を求めよ.
答えは,$a,b,c$ の値をそれぞれ $1,2,3$ 行目に記入せよ.ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
のように記入して答えよ.
【解答例】
1
-2
-1/3
方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.
以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.
【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$
答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.
【解答例】
3
A
-5/13
B
正 $6$ 角形 $\mathrm{ABCDEF}$ の中心を $\mathrm O$ とし,正 $6$ 角形の $6$ 個の辺と,$\mathrm O$ と各頂点を結ぶ $6$ 個の線分の,計 $12$ 個の線分を考える.このとき,これらの線分を辺とする正三角形が $6$ 個できている.これらの線分のうちの幾つかを取り除いて,正三角形が $1$ つもできない状態を作りたい.そのような取り除き方は何通りか求めよ.
$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.
答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.
$n$ を非負整数とする.番号 $0,1,2,\cdots,2^n-1$ が $1$ つずつ振られた $2^n$ 枚の札が箱に入っている.「箱から札を無作為に $1$ 枚取り出し,札の番号を記録してから箱の中に戻す」という操作を考える.
以下の問いに答えよ.ただし,自然数 $N$ に対し,$\displaystyle\frac N{2^m}$ が自然数となるような最大の非負整数 $m$ を $f(N)$ で表すとする.
$(1)$ 操作を $1$ 回おこない,記録した番号を $b$ とする.このとき,$f({}_{2^n}\mathrm C_b)$ の期待値を求めよ.
$(2)$ 操作を $2$ 回おこない,記録した番号を $a,b$ とする.このとき,$f({}_{2^n+a}\mathrm C_b)$の期待値を求めよ.
ただし,解答に際しては $n=10$ のときの値を答えよ.
答えの値は, $\displaystyle \xi+\frac{\eta}{\zeta}$ のように,整数部分 $\xi$ と小数部分 $\displaystyle\frac{\eta}{\zeta}$ に分けて求める.ここで,$\eta$ は非負整数,$\zeta$ は自然数で,$\eta$ と $\zeta$ は互いに素とする.
$(1)$ の $\xi,\eta,\zeta$ の値をそれぞれ $1,2,3$ 行目に,$(2)$ の $\xi,\eta,\zeta$ の値をそれぞれ $4,5,6$ 行目に記して答えとせよ.