【補助線主体の図形問題 #075】
${
\def\mytri#1{\triangle \mathrm{#1}}
}$ 今週の図形問題のテーマは面積関係です。便宜的に$\mytri{ADP}$の面積を問うていますが、まずは$\mytri{ACP}:\mytri{ADP}$を経由すると考えやすいかと思います。想定解は暗算でも処理可能ですが、どうぞお好きなように解いてやってください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #074】
今週の図形問題はシンプルにまとめてみました。自信のある方は暗算でねじ伏せてやってください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を半角数字で解答してください。
【補助線主体の図形問題 #073】
今週の図形問題です。中心の位置も半径も中心角も異なる扇形に登場してもらいました。計算に一手間必要なので、簡単なメモ用紙程度の紙は必要になるかと思います。どうぞじっくりとお楽しみください。
(2022年9月27日0時05分)
昨夜投稿した「2つの扇形」ですが、僕が誤った正答を設定してしまい、本来なら正解であるにもかかわらず不正解扱いされてしまう事態が起きてしまいました。お詫びいたします。申し訳ございませんでした。
なお、誤っていた元の問題は削除し(正確には下書きに戻し)、新たに問題を投稿し直しました。誤った問題のせいで下がってしまった正解率については元に戻してもらえるよう問い合わせます。今しばらくお待ちください。
なお、今回の僕の誤りについては複数の指摘がありました。改めてこの場で御礼申し上げます。
(2022年9月29日22時28分追記)
下がってしまった正答率について元に戻していただいた旨の連絡がありました。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #072】
今週の問題は久しぶりに求角問題です。地道に角度を求めていけば手掛かりが見つかるかもしれません。自信のある方は、できるだけ少ない計算回数で、かつ、暗算で挑戦してみてください!
${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
入力を一意に定めるための処置です。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #071】
今週の図形問題です。正三角形と扇形を組み合わせたシンプルな構図にまとめてみました。おそらくいろいろな解法が存在するでしょうが、暗算可能な解法も仕込んでいます。お好きな解法をお楽しみください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、ピンクで示した線分の長さを求めてください。
互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。
【補助線主体の図形問題 #070】
今週は、僕の出題では珍しく軌跡の問題です。初等幾何によらない解法も存在しますが、いつも通り補助線でも突破可能です。難易度評価は補助線による解法を想定しており、それ以外の解法が思いついた方にはぐっと簡単に見えるかもしれません。お好みの解法でお楽しみください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #069】
今週の図形問題は補助線の威力が味わえる1題となっています。腕に覚えのある方は暗算で、そこまでは……という方も紙に思いっきり補助線を書き込みながらお楽しみください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
図の条件の下で、線分 $OO'$ の長さを求めてください。
$OO'^2$ は正整数になるので、その値を半角数字で解答してください。