数学の問題一覧

カテゴリ
以上
以下

キカ⭐️キカ⭐️

mim 採点者ジャッジ 難易度:
2日前

0

問題文

ある鋭角三角形ABCにおいてAから対辺への
垂線の足をD,ADの中点をM,△ABCの内心を
IとするとAC//MIである。
BD=1,CD=6のとき△ABCの面積を求めよ。

解答形式

ある程度シンプルな形で答えよ。

松笠 ドングリ

mim 採点者ジャッジ 難易度:
2日前

0

問題

任意の自然数nにおいて、$A(n+1)=\frac{A(n)^2+A(n+2)^2}{A(n)+A(n+2)},A(n)>0$
が成り立つ数列{A(n)}をA(2),A(1)の値に
よって定める。
この数列はA(2)>A(1)>0を満たす
任意の(A(1),A(2))組に対して一意に定まる。
$$\lim_{n\to \infty}A(n)を求めよ。
$$(但し、数列{X(n)}において常にX(n)>X(n+1)>x
ならX(n)が収束することを用いて良い)

解答形式

収束するならその値を、
振動するときは'振動する'と、
無限大に発散する時は∞と答えよ。

軌跡の長さ

mim 自動ジャッジ 難易度:
4日前

2

問題文

xy平面上に固定された円板C:x^2+y^2=1と、
CにA(1,0)で固定された長さ2π、もう一方の端点をPとする糸がある。
始めにP=Aとなるように糸を時計回りでCに巻き付ける。
ここで、Cと合同な円板C'をAで外接させ、
C’上の接点とPを接着する。
C'がCに接しながら糸を弛ませずに反時計回りに
Cを一周する。
(但し、始めからしばらくはC'に糸は巻きつかない)
Pの軌跡の長さを求めよ。

解答形式

Xπ+Y(X,Yは有理数)の形になるので
X+Yを最もシンプルな形で答えよ。
(但し、X,Yは正の数とは限らない)
不正解となった場合、Xπ+Yもしくは簡単な方針を質問欄に入れてくれると助かります

難しい求積

mim 自動ジャッジ 難易度:
5日前

0

問題

ある三角形OABにおいて
OP=sOA、OQ=tOBとなるように
P,Qを半直線OA,OB上におく(0<s,t<1)
そして、点Rを次のように定める
・Rは四角形ABQPの内部に存在し、
  |O-AB|:|O-PQ|=|R-AB|:|R-PQ|を満たす
(但し、|X-YZ|は点Xから直線YZへの距離とする)
このとき、s,tがs+t=1を満たしながら変動する。
Rの存在領域の面積を求めよ!!

解答形式

〈(10D+E)√F−Gπ〉|△OAB|÷9√3と表せるので(D,E,F,Gは数字)、四桁の数DEFGを答えよ

B

nmoon 自動ジャッジ 難易度:
7日前

52

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

D

nmoon 自動ジャッジ 難易度:
7日前

37

問題文

$0$ 以上 $1$ 以下の実数 $a_{1} , a_{2} , a_{3}$ について,以下の値の最大値を求めてください.

$$a_{1} + 2a_{2} +3a_{3} +4\sqrt{a_{1}(1-a_{1}) + a_{2}(1-a_{2}) + a_{3}(1-a_{3})}$$

解答形式

求める値を $M$ としたとき,$10000M$ の整数部分を解答してください.

E

nmoon 自動ジャッジ 難易度:
7日前

21

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

F

nmoon 自動ジャッジ 難易度:
7日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

A

nmoon 自動ジャッジ 難易度:
7日前

40

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

C

nmoon 自動ジャッジ 難易度:
7日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

500A

MARTH 自動ジャッジ 難易度:
7日前

4

以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください.
$$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$
$$\quad$$

Robbins Constant

udonoisi 自動ジャッジ 難易度:
9日前

1

問題文

単位立方体の内部からランダムに点を $2$ つ選んだときの平均距離を答えてください.

解答形式

答えは最大公約数が $1$ である正の整数 $a,b,c,d,e$ と互いに素な正の整数 $f,g$ と平方因子を持たない正の整数 $h,i,j,k$ と正の整数 $l,m,n$ を用いて
$$\frac{a+b\sqrt{h}-c\sqrt{i}-d\pi}{e}+\frac{\ln(l+\sqrt j)}{m}+\frac{f\ln(n+\sqrt k)}{g}$$
と表されるので, $a+b+c+d+e+f+g+h+i+j+k+l+m+n$ を解答してください.
ただし, $\ln x$ は $x$ の自然対数を表します.

注意

解説は用意していません