数学の問題一覧

カテゴリ
以上
以下

PGC005 (F)

pomodor_ap 自動ジャッジ 難易度:
4時間前

4

問題文

$AB=AC$ なる三角形 $ABC$ について,線分 $AB$ 上に点 $D$ をとり,点 $A$ から円 $DBC$ に引いた接線と円 $DBC$ の接点のうち,直線 $DC$ について点 $B$ 側にあるものを $T$ とします.円 $ATC$ と線分 $AB, BC$ の交点をそれぞれ $E(\neq A), P(\neq C)$ とし,直線 $DT$ と直線 $BC$ の交点を $Q$ とすると,直線 $AB$ は $\angle PAQ$ を二等分しました.$AD=7, DC=13$ のとき,線分 $AC$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.

PGC005 (C)

pomodor_ap 自動ジャッジ 難易度:
4時間前

21

問題文

$AB=5, AC=7$ なる三角形 $ABC$ について,$A$ から $BC$ に下ろした垂線と円 $ABC$ の交点を $D(\neq A)$,$BC$ の中点を $M$ とします.$\angle AMD=90^{\circ}$ であるとき,$BC$ の長さの四乗を求めてください.

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
4時間前

28

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
4時間前

31

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

PGC005 (E)

pomodor_ap 自動ジャッジ 難易度:
4時間前

7

問題文

鋭角三角形 $ABC$ について,垂心を $H$,外心を $O$,直線 $CH$ と直線 $AB$ の交点を $F$,直線 $BC, AC$ について $F$ と対称な点をそれぞれ $X, Y$ とし,直線 $BX$ と直線 $AY$ の交点を $P$ とします.$\angle FOX=\angle AFP$ かつ $FH=1, HC=7$ が成り立つとき,円 $ABC$ の半径としてありうる値の二乗の総和は互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
4時間前

9

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

指数・対数

y 自動ジャッジ 難易度:
4日前

0

$$
log_3\frac{{9}^{n^2}}{27^n}>9i^{10}
$$

指数・対数

y 自動ジャッジ 難易度:
4日前

0

$$
log_2\frac{{4}^{n^2}}{{8^n}}<9
$$

二次関数と指数・対数

y 自動ジャッジ 難易度:
4日前

0

$$
log_{2}{1024}^{n^2}-log_381^n+log_525=0\\について、最小値を求めてください。
$$

指数・対数

y 自動ジャッジ 難易度:
4日前

0

$$
-log_359049^n<6i^{10}
$$

指数・対数

y 自動ジャッジ 難易度:
5日前

0

$$
log_{10}{2}=2.3,log_{10}{3}=2.5とするとき\\1024^n>81i^6
$$

指数・対数

y 自動ジャッジ 難易度:
5日前

0

$$
x>0,y<0のとき\\
log_x(\frac{1}{x})^y<3i^6
$$