公開日時: 2025年12月13日12:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
24×24の方眼紙に色を塗る。使う色は、ビリジアン、エメラルド、ライムである。
色を塗った後、方眼紙の上下をねじらずに丸めて繋げると筒状になり、さらに筒の端同士をねじらずに丸めて繋げるとトーラスになる。このとき、どのマス目に対しても次の条件を満たした。
・自身のマスに隣り合う4マスのうち、斜めに繋がっていない2マスを選ぶと、必ずどちらかが自身と同じ色で、どちらかが自身と異なる色である
・任意の2×2の正方形内の色に関して、同じ色で隣り合っている2マスが存在しなければ、正方形内に3種類の色が存在する
あり得る塗り方は何通りあるか。但し、方眼紙を回転させて一致するものは異なるものとして数える。
公開日時: 2025年12月13日12:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
Aさんは次のゲー厶を行った。
Aさんはコインを持っていない。
2つのボタンがある。片方を押すと$1/3$の確率でコイン、もう片方を押すと$2/3$の確率でコインが得られる。4050回ボタンを押して2025個のコインが得られるようにAさんが最善の行動をした際、Aさんは次の条件を満たした。
①4050回スイッチを押した後コインを2025持っていた。
②2n回スイッチを押した後コインをn個持っている、という状態が0以上3回以下発生した。(1≦n≦2024)
条件①②を同時に満たす確率をある既約分数$\frac{a}{b}$を用いて
$\frac{a}{b}×_{4050}C_{2025}×(\frac{2}{9})^{2025}$
と表せるので、a+bを求めよ。