数学の問題一覧

カテゴリ
以上
以下

smasher

公開日時: 2026年1月27日9:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$\dfrac{m!}{n!}=mn$$を満たす非負整数の組$(m,n)$について、$m+n$の総和を求めてください。

解答形式

半角数字で入力してください。

tanatchi94

公開日時: 2026年1月25日1:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

高校数学 数学 三角形

問題文

内角がすべて90°となる三角形を構成せよ。

解答形式

文章でまとめなさい。

m07

公開日時: 2026年1月24日16:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 中学数学 ルート シンプル 中学

√13ー2√11を√を使用せずに答えなさい

解答形式

中学生までの知識のみを使用し解となぜその解になるのか示しなさい

Mid_math28

公開日時: 2026年1月23日18:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

鋭角三角形 $ABC$ の垂心を $H$ $,$ $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とし $,BC$ の中点を $M$ とする$.$ 直線 $AM$ 上に $\angle APH=90 ^。$ となる点 $P$ をとり$,$ 直線 $DE$ と直線 $FP$ の交点を $Q$ とする $.$
また $,$ 三角形 $AHC$ の外接円と三角形 $ABM$ の外接円との交点を$R$ $,$ 三角形$AHC$の外接円と線分 $DE$ の交点を$S$ とする $.$
$$AM:AS=\sqrt{3}:\sqrt{2}  AQ=11  QR=7$$
が成り立つとき, $BC$ の長さを求めよ.

解答形式

$BC^2$ は正の整数値になるので,その値を半角で解答してください.

Mid_math28

公開日時: 2026年1月23日18:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形 $ABC$ があり, 辺 $BC$ の中点を $M$ とします. $B$ から直線 $AM$ に下した垂線の足を $X$ とすると,$A,X,M$ はこの順にあり
$$AX=9  XM=2  \angle{BAM}=\angle{XCB}$$
が成立しました. $AC^2$ を求めてください.

解答形式

答えは正の整数値になるので,半角で解答してください

smasher

公開日時: 2026年1月16日12:40 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

同様に確からしいサイコロを$2$回振り、出た目を順に$a,b$とします。
$\sqrt{a-\sqrt{b}}$の二重根号が外せる確率を求めてください。

解答形式

二重根号を外せる確率は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$p+q$の値を半角数字で入力してください。

解答に誤りがありました。(修正済み)大変申し訳ございません。

mathken

公開日時: 2026年1月11日18:14 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

網掛けになっている小さい正六角形と大きい正六角形の面積比は、互いに素な自然数 $a,b$ を用いて $a:b$ と表せます。 $a+b$ の値を答えてください。

Auro

公開日時: 2026年1月11日7:51 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

関数
$$
y = x \log(1 + x)\quad (x \ge 0)
$$
の逆関数を
$$
y = f(x)\quad (x \ge 0)
$$
とする.

また,関数 $g(x)$を
$$
\begin{aligned}
g(x+1) &= g(x), \\
\int_{0}^{1} g(x)\,dx &= 1
\end{aligned}
$$
を満たす連続関数とする.

正の整数 $n$ に対して,次の極限値を求めよ.
$$
\lim_{n \to \infty}
\int_{0}^{e-1} f(x)\,g(nx)\,dx
$$

解答形式

例)ひらがなで入力してください。

LIVEA

公開日時: 2026年1月10日22:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$18^{223}+5^{410}$$の桁数を求めよ。ただし、$log_{10}2=0.3010,log_{10}3=0.4771$とする。

解答形式

数字だけで解答しなさい。

tb_lb

公開日時: 2026年1月10日21:49 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2026年問題

${}$ 西暦2026年問題第10弾です。今年の最終回を迎えました。最終回はどこから手を付けていいのか迷ういそうな問題を用意しています。とはいえ、タネに気づけばサクッと解けるように仕込んであります。じっくりと腰を据えてお楽しみください。

解答形式

${}$ 解答は求める$x$の値を小さい順に2行に分けて半角で入力してください。「$x=$」の記載は不要です。
(例)$x=$110, 2026 → 《1行目》$\color{blue}{110}$、《2行目》$\color{blue}{2026}$

tb_lb

公開日時: 2026年1月10日0:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

西暦問題 2026年問題 代数・解析

${}$ 西暦2026年問題第9弾です。24時を回って、日付が変わってしまいました。僕の西暦問題では珍しく代数・解析分野からの出題となっています。さらにいうと、前回の問題と同じく$2026$を$2+2\sqrt{6}$と解釈する強引さを見せています。そんな珍しさと強引さを味わいながらお楽しみください。

解答形式

${}$ 解答は求める解の個数をそのまま半角で入力してください。
(例)109個 → $\color{blue}{109}$
 なお、解が存在しない(不能)場合は$\color{blue}{0}$と、解が無数に存在する(不定)場合は$\color{blue}{\mathrm{inf}}$と入力してください。

tb_lb

公開日時: 2026年1月8日21:52 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題 西暦問題 2026年問題

${}$ 西暦2026年問題第8弾です。$2026$を$2^{26}$とする強引な西暦問題となりました。ついでに書くと、どこかに類題がありそうで、その点でも恐れています。皆さんはそんな僕の恐れなど気にせずにお楽しみください。

解答形式

${}$ 解答は1行目に$p_3$の値を、2行目に$p_4$の値を、それぞれ半角で入力してください。「$p_3=$」「$p_4=$」といった記載は不要です。
(例)$p_3=$108、$p_4=$2026 → 《1行目》$\color{blue}{108}$、《2行目》$\color{blue}{2026}$