数学の問題一覧

カテゴリ
以上
以下

Clea

公開日時: 2026年2月11日20:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

偶数桁の回文数のうち、素数であるものをすべて求めよ。

解答形式

答えの総和を解答してください。

Germanium32

公開日時: 2026年2月11日13:00 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

三角形ABCの
Pを線分AB上にABを2:3に内分するように、
Qを直線BC上にBCを1:2に外分するように、
Rを直線AC上に取ったところ、
P,Q,Rは一直線上にありました
この時、AR/CRの値を求めてください。

解答形式

解答する値は互いに素な自然数(a,b)を用いてa/bと表せるので、a+bの値を求めてください

yaguwa

公開日時: 2026年2月4日5:02 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

次の定積分の値を求めよ.
$$
\int_{-\frac{π}{2}}^{\frac{π}{2}}\frac{\cos x}{1+e^{\sin x}}dx
$$

解答形式

半角数字で答えのみ解答してください.
答えが分数となる場合,例えば$-\frac{11}{2}$などとなる場合は-11/2のように解答してください.

miq_39

公開日時: 2026年2月4日1:46 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何

問題文

円に内接する四角形 $ABCD$ があり,$\angle ABC = 90^\circ$ をみたしている.$2$ 点 $A , C$ を通り直線 $AB$ に接するような円と線分 $BD$ の交点を $E$ とすると,$CD = CE$ が成立した.$BE = 7 , ED = 9$ であるとき,線分 $AB$ の長さの2乗を求めよ.

解答形式

半角数字で解答してください.

Mid_math28

公開日時: 2026年2月2日17:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$AB=44,AC=46$ をみたす三角形 $ABC$ があり, $AB,AC$ の中点を $M,N$ とする. 三角形 $ANB$ の外接円と三角形 $AMC$ の外接円の $A$ でない交点を $P$ とすると $P$ が線分 $BC$ 上に存在した.
このときの線分 $BC$ の長さを求めよ

解答形式

$BC^2$ は正の整数値になるので, その値を半角で解答してください

kikutaku

公開日時: 2026年2月2日8:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

$y=xe^x$の第$n$次導関数を$y^{(n)}$とし,

そのグラフの変曲点の$y$座標を$Y_{n+1}$とおく。

$\sum_{k=1}^{\infty} Y_k$

を求めよ。ただし,答えのみ記せ。

obenben

公開日時: 2026年2月1日17:19 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

中学数学 正三角形 正方形 文字式

問題文


「正方形と正三角形 Part1」に続いており、誘導のようになっているため、Part1を解いていない方は先にPart1を解いておくことをお勧めします♪
誘導なしでもデキルケド、、、

四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

SRとPBの交点をTとする。SBはSTの何倍であるか答えなさい。

解答形式

◯倍のような「倍」はつけずに数字や記号のみで答えてください。√、+、-などを使う場合はカタカナで表記してください。2+√2のように、√の数よりも先に2などの整数を答えてください。√同士であれば、中身の数が少ない順に答えなさい。
√→ルート
+→プラス
-→マイナス
(例)3
  2ルート3
  3マイナスルート2プラスルート3

obenben

公開日時: 2026年1月31日18:11 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

正三角形 正方形

問題文


四角形ABCDは正方形である。辺AD上に点P、BCの延長線上に点Qを取ると、三角形PBQは正三角形になる。DCとPQの交点をRとする。AP上にSを取ると三角形SBRも正三角形になる。次の問いに答えなさい。

角RBCの大きさを求めなさい

解答形式

角度の大きさは数字のみで回答してください
(例)180
  90 など

obenben

公開日時: 2026年1月31日16:06 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

動点

問題文

長方形ABCDがあり、AB=X cm、AD=Ycmとする。(X:Y=1:2)
CB=CEとなるよう、AD上に点Eをとる。
点Pは頂点Bから頂点Cまで動く。
CEとPDの交点をSとする。
このとき、三角形CBE相似三角形EPSになるような場所に点Pがあるとき、次の(ア)〜(ウ)にはいる数字を答えなさい。

BP:PC=(ア):√(イ)+(ウ)

解答形式

ア、イ、ウの順に、間に点を入れながら答えてください。1行で答えること。
(例)
1、2、3

obenben

公開日時: 2026年1月31日15:20 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

動点 ルート

問題文

長方形ABCDがあり、AB=Xcm、AD=Ycmである。 (X <Y) 点Pは頂点Bを出発して頂点Cまで動く。
途中、角APDが直角になった時が2回あった。
ここで、1回目に直角になった時の点Pの位置をQとし、2回目に直角になった時の点Pの位置をRとする。
BQ=2cm、QR=4cmである時、X、Yはそれぞれ何cmだと考えられるか?

解答形式

下の形式のようにX、Yは大文字、cmは小文字で、2行構成で答えなさい。ただし√が含まれる場合はカタカナで答えなさい。
√2→ルート2
5√17→5ルート17
(例)
Xcm=◯◯cm
Ycm=◯◯cm

smasher

公開日時: 2026年1月27日9:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$\dfrac{m!}{n!}=mn$$を満たす非負整数の組$(m,n)$について、$m+n$の総和を求めてください。

解答形式

半角数字で入力してください。

tanatchi94

公開日時: 2026年1月25日1:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

数学 三角形 高校数学

問題文

内角がすべて90°となる三角形を構成せよ。

解答形式

文章でまとめなさい。