公開日時: 2025年12月6日17:37 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$1$ 以上 $10^7$ 以下の $11$ の倍数全てに対して,それぞれの各位の和の総和を求めてください.
公開日時: 2025年12月6日17:25 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$2024!$ 以上の正整数 $n$ のうち,$\dfrac{2025!}{n}$ の小数部分が $\dfrac{2025!-67}{2025!}$ より大きいものの個数を求めてください.
公開日時: 2025年12月5日13:05 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。
最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。
(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。
$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。
半角数字・記号で解答。
公開日時: 2025年12月5日1:32 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$
$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください
公開日時: 2025年12月4日11:35 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
$m$と書かれたカードからなるカードの束を$m$の束と呼ぶことにします。
$1$の束、$2$の束、$3$の束、$4$の束、$5$の束、$6$の束、$7$の束、$8$の束、$9$の束 が$1$つずつあります。
$A$さんは異なるカードの束を$9$つまで選び、その後$A$さんはこれらのカードの束に対して以下の操作を$n$回行います。
操作
選んだカードの束のうち一つを選びカードを$1$枚引く。
操作を$n$回終えた時点で$A$さんは$n$枚のカードを持っています。$A$さんは持っているカードに書かれている数字の総和と総積が等しくなるようにカードを引きたいです。
このようなカードの引き方が存在する束の選び方の総数を求めてください。
ただし、$n$は$2$以上の整数とし、カードの束にカードはいくらでもあるとします。
半角数字で入力してください。
公開日時: 2025年11月27日10:52 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞)
に対して実数𝑝,𝑞が
𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。
このとき3点A,B,Cを通る上に凸な二次関数が
存在しないような点Cの取りうる範囲の面積を求めよ。
半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。
回答の際に一文字目に計算記号が来ないようにしてください。
(ダメな例)-2√2+π→(良い例)π-2√2
また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e
公開日時: 2025年11月25日19:31 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.
半角数字で入力してください。
公開日時: 2025年11月25日19:29 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した.
$$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
半角数字で入力してください。
公開日時: 2025年11月25日19:28 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ
任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.
半角数字で入力してください。
公開日時: 2025年11月25日18:14 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。