数学の問題一覧

カテゴリ
以上
以下

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ p,d,q,b,a,e,s の $7$ 文字を使い,$6$ 文字の文字列を作ることを考えます.(使わない文字が必ず $1$ 文字以上出てきます.)
$ $ 文字列において,$1,6$ 文字目,$2,5$ 文字目,$3,4$ 文字目が後述の対応する文字どうしになるようにする必要があります.
$ $ 対応する文字は以下のとおりです.

  • p と d
  • q と b
  • a と e
  • s と s

$ $ なお,d と p のように,対応する文字どうしであり指定された文字目に $2$ 文字がいれば文字列内で順序が入れ替わってもよいものとします.
$ $ また,この文字列内において,同じ文字を使えるのは $2$ 回までとします.
$ $ 以上の条件を全て満たした文字列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ $3×4$ で構成された $12$ マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
$ $ マスを塗るためには持ち点を消費します.持ち点は初期状態では $12$ 点です.
$ $ マス目の色は,以下の通りに塗り替えることができます:

  • 持ち点を $1$ 消費して,任意の白色のマスを $1$ つ灰色にする.
  • 持ち点を $1$ 消費して,任意の灰色のマスを $1$ つ黒色にする.
  • 持ち点を $2$ 消費して,任意の黒色のマスを $1$ つ白色に戻す.

$ $ また,マス目を塗る上で以下を守る必要があります:

  • 全ての持ち点を過不足なく消費しなければならない.
  • 全ての持ち点を消費したとき,全てのマスが白色であってはならない.

$ $ このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
$ $ ただし,反転・回転して一致するものは区別します.

解答形式

非負整数を半角で解答してください.

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ $5$ 種類の大きさ $1,2,3,4,5$ の服がそれぞれ $3$ 枚ずつあり,合計 $15$ 枚にはすべてに相異なる色が着色されています.$A$ さん,$B$ さん,$C$ さんの $3$ 人は,これら $15$ 枚の服からそれぞれ $1$ 枚ずつ異なる服を選んで着ます.ここで,$3$ 人が着ることのできる服の大きさは以下の通りです.

  • $A$ さんは,大きさ $1,2,3,4,5$ 全てを着ることができる.
  • $B$ さんは,大きさ $1,2,3$ を着ることができる.
  • $C$ さんは,大きさ $3,4,5$ を着ることができる.

$ $ このとき,$3$ 人の服の選び方はいくつありますか?
$ $ ただし,$3$ 人全体で見て同じ服を選んでいても着ている人が異なる場合違う選び方として区別します.

解答形式

非負整数を半角で解答してください.

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ $1$ を $3$ つ,$2$ を $1$ つ,$7$ を $2$ つを全て使い,それらを並べ替えてできた長さ $6$ の文字列は全部でいくつありますか?
$ $ ただし,同じ文字は区別しません.

解答形式

非負整数を半角で解答してください.

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ ある教室には,縦 $6$ 列,横 $3$ 列で横長の机が並んでおり,$1$ つの机ごとに横並びに $2$ つずつ座席があるため,$36$ 個の座席と $18$ 個の机があります.$A$ くん,$B$ くん,$C$ くんの $3$ 人が,それぞれ $36$ 個の座席から $1$ つずつ異なる座席を選び座ります.
$ $ ここで,以下の条件を満たしました.

  • $B$ くんは,$A$ くんの座っている座席のある机から縦の列で見たときに $3$ 列以上後ろの机にある座席のみに座る.例えば,$A$ くんが縦 $1$ 列目の机にある座席に座っている場合,$B$ くんは縦 $4,5,6$ 列目の机にある座席に座っていることになる.
  • 机の縦の列,横の列どちらで見たときも,$3$ 人は全員相異なる列の机にある座席に座っている.

$ $ このとき,$3$ 人の座席の座り方は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

Tiri7_Ma13a_

公開日時: 2024年6月22日21:00 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.

解答形式

非負整数を半角で解答してください.

poino

公開日時: 2024年6月21日21:07 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

一辺の長さが $12$ の正方形 $ABCE$ の外部に点 $D$ を、三角形 $CDE$ が正三角形になるようにとります。
正方形 $ABCE$ の外接円と直線 $DE$ の交点のうち $E$ でない方を $F$ とするとき、$AF^2$ の値を解答してください。

解答形式

半角数字で入力してください。

nanohana

公開日時: 2024年6月21日19:06 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

ベクトル

問題文

一辺の長さが1の正三角形ABCの内部及び周上を点Pが動く。内積(→AP)・(→BP)の取りうる値の範囲を求めよ。

解答形式

解答は(ア)≦ (→AP)・(→BP)≦(イ)となるので、(ア) (イ)に当てはまる数字を改行して入力してください。ただし、近似値√2=1.4、√3=1.7、√5=2.2、√7=2.6として入力してください。また、解が整数出ない場合は分数で解答してください。

(例)
(ア) =-√2、(イ)=4/7のときは
-7/5
4/7
と入力してください。

kokoyu

公開日時: 2024年6月19日23:33 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ


問題文

連続する5つの整数の和は必ず5の倍数になる。この理由を、nを使った式で説明しなさい

解答形式

数字は半角とする

orangekid

公開日時: 2024年6月19日19:43 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

ある数$N$は$714$進法で$\underbrace{1818\dots1818}_{\text{1430個}}0$と表されます。$N$の素因数に含まれない最小の素数は何でしょう?

解答形式

半角数字で入力してください。

orangekid

公開日時: 2024年6月19日19:43 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$\textbf{良い数}$とは、$19$桁の正整数で、$1$の位と$10^{18}$の位がともに$1$であり、$10$進法において隣り合う数の差の絶対値が常に$1$となるような数のことである。例えば、$1234567678987654321$や$1010101212321010121$は良い数である。このような数はいくつあるか。

解答形式

半角数字で入力してください。

kokoyu

公開日時: 2024年6月17日22:02 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

連立方程式

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする