数学の問題一覧

カテゴリ
以上
以下

tb_lb

公開日時: 2023年7月30日22:08 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

akaddd

公開日時: 2023年7月24日22:31 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

微分積分

(1). $(1+x)^\alpha\ (\alpha\in{\mathbb{R}})$のマクローリン展開を求めよ.
(2). $\arcsin{x}$のマクローリン展開を求めよ.

tb_lb

公開日時: 2023年7月23日21:21 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #108】
 問題投稿日の前日7月22日は、分数の$\dfrac{22}{7}$が$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$と円周率$\pi$に近い値をとることから「円周率近似値の日」に定められています。というわけで1日遅れですが、円の求角問題を用意しました。どうぞ軽くひねってやってください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

miq_39

公開日時: 2023年7月19日22:33 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ

素数

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

tb_lb

公開日時: 2023年7月16日23:01 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #107】
 今週の図形問題です。3連休の中日、ちょっと重めの問題を用意しました。そのかわり(想定解では)計算はわずか、暗算で処理できる分量です。どうかお好きな解法でお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

akaddd

公開日時: 2023年7月14日16:52 / ジャンル: 数学 / カテゴリ: 大学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


以下の極限値を求めよ。

$$\lim_{n\rightarrow{\infty}}\biggr(\lim_{x\rightarrow{0}}\prod_{k=1}^n\frac{kx}{\sin(k+1)x}\biggr)
$$

seven_sevens

公開日時: 2023年7月13日17:16 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

三角関数 極限 数Ⅲ

問題文

(1)$\displaystyle 0<\theta<\frac{\pi}{2}$であるとするとき、$2\sin\theta+\tan\theta>3\theta$を示せ。
(2)$\displaystyle \sqrt{2}+\sqrt{3}$と$\pi$の大小関係を示せ。

tb_lb

公開日時: 2023年7月9日22:07 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積

【補助線主体の図形問題 #106】
 今週の図形問題です。外接円に接線、角の2等分線、垂線と要素がてんこ盛りの問題になりました。これらが出会うとき、どんな性質が生まれるのか、補助線の力を借りてぜひご確認ください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2023年7月2日23:08 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #105】
 今週の図形問題です。今回は数学パズルから詰め込み(パッキング)と呼ばれるジャンルを素材にしました。解き慣れないジャンルかもしれませんが、突破点が見つかれば機械的に長さが求まるはずです。しばし詰め込み(パッキング)の問題をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2023年6月25日22:23 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #104】
 今週の図形問題です。2円と共通外接線というありがちな構図ですが、そこに長方形まで参上してしまいました。どうぞうまいこと処理してやってください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

mgiz

公開日時: 2023年6月23日22:27 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

対数 高校数学

問題文

$$
f(x)=log_x 2とする。y=f(f(f(x)))について、
$$
(1) 定義域を述べよ。
(2) y=2のときxの値を求めよ。

tb_lb

公開日時: 2023年6月18日21:49 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #103】
 今週の図形問題です。今回は鏡映三角形に中点と垂線を組み合わせてみました。これらが出会ったときに何が起こるか、補助線を引きつつぜひお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。