数学の問題一覧

カテゴリ
以上
以下

[C] 奇妙な数列

ofukufukufuku 自動ジャッジ 難易度:
3年前

12

問題文

以下のような数列 $\{a_n\}$ を考える。
$$
a_n=1+\sum_{m=1}^{2^n}{\rm floor}\left[\sqrt[n]{\frac{n}{\displaystyle{\sum_{k=1}^m}\; {\rm floor}\left(\cos^2\cfrac{(k-1)!+1}{k}\pi\right)}}\right]
$$なお、${\rm floor}(x)$ は $x$ 以下の最大の整数を返す関数とする。このとき、$a_{20}$ を求めよ。

ただし、必要であれば以下の定理および不等式を用いても良い。

  1. $n$ が素数のとき
    $$\quad(n-1)!\equiv-1 \pmod n$$
  2. $n\geq 1$ のとき
    $$1\leq\sqrt[n]{n}<2$$

解答形式

半角数字で入力してください.

[D] Eigensequence

halphy 自動ジャッジ 難易度:
3年前

6

問題文

漸化式
$$
a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
$$および
$$
a_1=1, \; a_2=0, \; a_3=0
$$を満たす数列 $\{a_n\}$ を考える。次の空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまる数字を答えなさい。

  • 漸化式
    $$
    a_{n+3}=3a_{n+2}-4a_{n+1}+2a_n\quad (n=1,2,\cdots)
    $$を満たす数列全体の集合を $V$ とする。数列 $a_n, b_n\in V$ および $c\in\mathbb{C}$ に対して,第 $n$ 項が $ca_n, a_n+b_n$ であるような数列をそれぞれ数列 $a_n$ の $c$ 倍,数列 $a_n, b_n$ の和と定義することにすると,この和とスカラー倍により $V$ は $\mathbb{C}$ 上のベクトル空間になる(確かめよ)。ここで,$V$ の元 $a_n$ は,$a_1, a_2, a_3$ を定めることで完全に決定できる。すなわち,写像 $\varphi: V \to \mathbb{C}^3$ を
    $$
    \varphi(a_n)=\begin{pmatrix} a_1 \\ a_2 \\ a_3\end{pmatrix}
    $$で定めると,$\varphi$ は全単射である。しかも,$\varphi$ は線型写像だから,$\varphi$ はベクトル空間の同型になる。$V$ は $\fbox{ア}$ 次元である。また,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}\in V$ を
    $$
    \varphi(e_n^{(1)})=\begin{pmatrix} 1 \\ 0 \\ 0\end{pmatrix},\; \varphi(e_n^{(2)})=\begin{pmatrix} 0 \\ 1 \\ 0\end{pmatrix},\; \varphi(e_n^{(3)})=\begin{pmatrix} 0 \\ 0 \\ 1\end{pmatrix}
    $$となるように定めると,$e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ は $V$ の基底になる。

  • $V$ 上の線型変換 $L: V\to V$ を次のように定義する。$a_n\in V$ に対して,$L(a_n)$ を第 $1, 2, 3$ 項がそれぞれ $a_2, a_3, a_4$ である数列とする($L$ が線型写像になることを確かめよ)。このとき,$L(a_n)$ の第 $n$ 項は $a_{n+\fbox{イ}}$ である。基底 $e_n^{(1)}, e_n^{(2)}, e_n^{(3)}$ のもとでの $L$ の表現行列 $L_A$ は
    $$
    L_A=\begin{pmatrix} \fbox{ウ} & \fbox{エ} & * \\ \fbox{オ} & \fbox{カ} & \fbox{キ} \\ \fbox{ク} & \fbox{ケコ} & \fbox{サ}\end{pmatrix}
    $$である。

  • $L_A$ の固有値を $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ とする($\lambda^{(1)}\in\mathbb{R}, {\rm Im}(\lambda^{(2)})>0, {\rm Im}(\lambda^{(3)})<0$)。このとき
    \begin{align}
    \lambda^{(1)}&=\fbox{シ}\\
    {\rm Re}(\lambda^{(2)})={\rm Re}(\lambda^{(3)})&=\fbox{ス}\\
    {\rm Im}(\lambda^{(2)})=-{\rm Im}(\lambda^{(3)})&=\fbox{セ}
    \end{align}である。

  • 固有値 $\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}$ に対応する固有ベクトルをそれぞれ $\alpha^{(1)}, \alpha^{(2)}, \alpha^{(3)}$ とする。固有ベクトルには定数倍の不定性があるが,$\alpha^{(j)}\;(j=1,2,3)$ の第 $1$ 成分が固有値 $\lambda^{(j)}$ に一致するようにとると
    \begin{align}
    \alpha^{(1)}=\begin{pmatrix} \lambda^{(1)} \\ \fbox{ソ} \\ * \end{pmatrix},\; \alpha^{(2)}=\begin{pmatrix} \lambda^{(2)} \\ \fbox{タ}\;i \\ * \end{pmatrix},\; \alpha^{(3)}=\begin{pmatrix} \lambda^{(3)} \\ * \\ \fbox{チツ}-\fbox{テ}\;i \end{pmatrix}
    \end{align}である。

  • $\varphi(\beta_n^{(1)})=\alpha^{(1)}, \;\varphi(\beta_n^{(2)})=\alpha^{(2)}, \;\varphi(\beta_n^{(3)})=\alpha^{(3)}$ となる数列 $\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ をとる。$\beta_n^{(1)}, \beta_n^{(2)}, \beta_n^{(3)}\in V$ は $V$ の基底をなすから,$V$ の任意の元 $a_n$ はこれらの線型結合で表すことができる。例えば,$a_n\in V$ が
    $$
    a_1=1, \; a_2=0, \; a_3=0
    $$を満たすとき
    $$
    a_n=\fbox{ト}\;\beta_n^{(1)}-\frac{\beta_n^{(2)}-\beta_n^{(3)}}{\fbox{ナ}\; i}
    $$が成り立つ。これを変形すると
    $$
    a_n=\fbox{ニ}-\left(\sqrt{\fbox{ヌ}}\;\right)^n\sin\left(\frac{n\pi}{\fbox{ネ}}\right)
    $$となる。また,$a_1,\cdots, a_{100}$ のうち $a_n$ が最大となるのは $n=\fbox{ノハ}, \fbox{ヒフ}$ のときである。ただし $\fbox{ノハ} < \fbox{ヒフ}$ とする。

※この問題では,数列とは写像 $a: \mathbb{N} \to \mathbb{C}$ のことをいう。$n\in\mathbb{N}$ に対して,$a(n)$ のことを単に $a_n$ と表記する。また,記号の濫用であるが $a$ を $\{a_n\}, a_n$とも書く。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{フ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{フ}$ に当てはまるものを改行区切りで入力してください。

[E] modじゃんけん

hinu 自動ジャッジ 難易度:
3年前

14

問題文

$n\;(\geq 2)$ を自然数とするとき,以下の試行を行うことを考える。


試行

  • $n$ 人が $0,1,2$ のいずれかひとつの数を無作為に選ぶ。
  • 人 $i\; (i=1,2,\cdots, n)$ が選んだ数を $a_i$ とする。各人 $i$ に対して,
    $$
    a_i\equiv\sum_{j=1}^n a_j\; ({\rm mod} \; 3)
    $$ならば人 $i$ は生存し,そうでないなら脱落する。この試行をmodじゃんけんと呼ぶことにする。

$n$ 人がmodじゃんけんを $1$ 回行い,全員が生存するか全員が脱落するとき,modじゃんけんの結果はあいこになると定義する。

$n$ 人がmodじゃんけんを $1$ 回行ってあいこになる確率を $p_n$ とするとき

$$
p_2=\frac{\fbox{ア}}{\fbox{イ}},\; p_3=\frac{\fbox{ウ}}{\fbox{エ}},\; p_4=\frac{\fbox{オ}}{\fbox{カキ}}
$$

である。$n$ を $\fbox{ク}$ で割った余りが $\fbox{ケ}$ であるとき

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{サ}}{\fbox{シ}^n}
$$

であり,そうでないときには

$$
p_n=\frac{\fbox{コ}^{n}+\fbox{ス}}{\fbox{シ}^n}
$$

である。また,

$$
\lim_{n\to\infty} p_n=\fbox{セ}
$$

が成り立つ。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{セ}$ には,半角数字 0 - 9 または記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{セ}$ に当てはまるものを改行区切りで入力してください。分数はこれ以上約分できない形で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

求面積問題4

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

半径比が1:2の同心円と直角三角形です。
赤い線分の長さが12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題2

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

直径10の半円中に、直径の和が10となる2つの半円を図のように配置します。点Aを大半円の弧上にとり、線分AB,ACと小半円の交点をD,Eとします。
$BD^2+DE^2+EC^2$が最小となるようにしたとき、その最小値を求めてください。

解答形式

半角数字で解答してください。

求角問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

半円3つが図のように配置されています。∠Xと∠Yの差を求めてください。
※同じ色で示した線分は長さが等しいです。

解答形式

0~360までの整数を半角数字で解答してください。
「度」や「°」などの単位を付けないでください。
例: 30° → 30

Mapping to a Map

halphy 自動ジャッジ 難易度:
3年前

0

問題文

$\mathbb{R}^3$上の単位球面
$$
S^2=\{(x,y,z)\in \mathbb{R}^3\mid x^2+y^2+z^2=1\}
$$に対して,その開部分集合 $U=S^2\setminus \{(x,y,z)\in S^2 \mid x\geq 0, y=0\}$ を考える。また,$\mathbb{R}^2$ の部分集合を
$$
V=\{(\theta, \varphi)\in\mathbb{R}^2\mid -\pi/2 < \theta < \pi/2, \;0<\varphi <2\pi\}
$$とおく。

写像 $f:V\to U, g: V\to \mathbb{R}^2$ を次のように定める。
\begin{align}
f(\theta, \varphi)&=(\cos\theta\cos\varphi, \cos\theta\sin\varphi, \sin\theta)\\
g(\theta, \varphi)&=(\varphi \cos\alpha, \sin\alpha)
\end{align}ただし,$\alpha$ は,関係式
$$
\sin 2\alpha+2\alpha=\pi\sin\theta
$$の唯一の解である。$g$ が単射であることは証明なしに用いてよい。

(1) $(\xi, \eta)=g(\theta, \varphi)$ とし,行列
$$
J(\theta, \varphi)=\begin{pmatrix} \cfrac{\partial\xi(\theta, \varphi)}{\partial \theta} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \theta} \\ \cfrac{\partial\xi(\theta, \varphi)}{\partial \varphi} & \cfrac{\partial\eta(\theta, \varphi)}{\partial \varphi} \end{pmatrix}
$$を考える。このとき
$$
|{\rm det}\,J(\theta, \varphi)|=\fbox{ア}\cos\theta
$$である。

(2) 領域 $g(f^{-1}(U))$ の面積は $\fbox{イ}$ である。

解答形式

空欄 $\fbox{ア}$, $\fbox{イ}$ には正の実数が当てはまる。これを $10$ 進小数に表し,小数第 $4$ 位以降を切り捨てたものを改行区切りで半角数字 0-9 およびピリオド . を用いて入力しなさい。例えば,$1.2345\cdots$ を当てはめるなら 1.234 と解答すること。

求面積問題3

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

図中の青い線分の長さはすべて10,赤で示した角はすべて等しいです。
このとき、緑色部分(凹四角形)の面積を求めてください。
解答形式に注意!

解答形式

$答えはA\sqrt{B}の形になります。(A,Bは自然数)$
$A+Bを解答してください。$
$<注意>$
$根号の中が最小となるようにしてください。$
$半角数字で解答してください。$
$例 : green area=10\sqrt{8}=20\sqrt{2}→A=20,B=2→22 と解答$