公開日時: 2022年1月5日23:39 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2022年問題第5弾です。当シリーズも後半ということで、極端に数を大きくしてみました。とはいえ、もちろん手計算で処理しきれるように仕込みは上々です。どうぞ0と2だらけの数たちをお楽しみください。
${}$ 解答は条件を満たす自然数の個数をそのまま入力してください。単位は不要です。
(例) $105$ 個 → $\color{blue}{105}$
なお、解法によってはやや面倒な計算が待っています。必要に応じてWolfram|Alphaや関数電卓などを遠慮なくご利用ください。
公開日時: 2022年1月4日22:55 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
(2022年1月28日23時17分)
出題から3週間余り、問題文に不正確な記述がありました。お詫びするとともに上記のように訂正いたします。不要に迷ってしまった方もいらっしゃるかもしれません。申し訳ございませんでした。
なお、修正前の問題文をご覧になりたい場合はこちらからどうぞ。
https://twitter.com/tb_lb/status/1478365250269622276
${}$ 西暦2022年問題第4弾です。今回は2022が満たす性質をちょいと替えてみるという手法で問題を作ってみました。ド根性ではなく、できるだけ計算の手間が減るような解法を楽しんでもらえたら嬉しいです。
${}$ 解答は$n$の値をそのまま入力してください。「$n=$」の記載も不要です。
(例) $n=104$ → $\color{blue}{104}$
なお、やや面倒な計算が待っています。必要に応じてWolfram|Alphaや関数電卓などを遠慮なくご利用ください。
公開日時: 2022年1月2日22:37 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 西暦2022年問題第2弾です。第1弾に引き続き虫食算で、今回は割り算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!
${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2022 \div 102 = 19$ 余り $84$ → $\color{blue}{2022 \text{÷} 102}$
入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)ではなく全角記号の「÷」でお願いします。
公開日時: 2022年1月1日22:35 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
${}$ 2022年、あけましておめでとうございます。本年もよろしくお願いいたします。
さて、新年数日は図形問題をお休みして、西暦である2022を織り込んだ数学やパズルの問題をお送りします。
初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。
${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2021 \times 2022 = 4086462$ → $\color{blue}{2021 \text{×} 2022}$
入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)ではなく全角記号の「×」でお願いします。
公開日時: 2021年12月26日23:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
【補助線主体の図形問題 #041】
2021年最後の投稿となりました。本問も変わらず発想次第では暗算での処理が可能です。自信のある方は紙・ペンを利用せず、脳内処理だけで解いてみてください!
${}$ 週に1回、補助線主体の初等幾何のお送りしてきましたが、年明けは西暦である2022を織り込んだパズルや整数問題などをお送りします。曜日と関係なく、1月1日もしくは2日から6~7日連続して投稿する予定です。ぜひご期待ください。
${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
入力を一意に定めるための処置です。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
公開日時: 2021年12月25日20:12 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図の条件の下で、青で示した角の大きさを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
公開日時: 2021年12月24日12:08 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
四角形ABCD、四角形GHCFはそれぞれ正方形で、1辺の長さはそれぞれ10cm、4cmです。また、DCとFC、BCとHCはぴったり重なっているとする。また、四角形IBKJは長方形で、IJは2cm、IBは4cmとし、ABとIB、BCとBKはぴったり重なっているとする。更に、AJとDGの延長とBCとの交点をEとし、Gを通りΔADEの面積を2等分する線とADとの交点をP、Jを通りΔADEの面積2等分する線と、ADとの交点をRとする。さらにPGの延長とBCとの交点をQ、RJとABとの交点をSとする。PGとRJの交点をOとする。四角形OJEQの面積を求めよ。
分数は/で表してください。
例)2分の9は 9/2 で表す。
公開日時: 2021年12月20日19:32 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。
$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。
公開日時: 2021年12月19日23:44 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
【補助線主体の図形問題 #040】
2021年も残り半月を切りました。慌ただしい頃合いかもしれませんが、ちょいと一息図形問題などいかがでしょうか。
適当に補助線を引いても気づいたら解けてしまうような問題かもしれません。腕に覚えのある方はぜひ完全に脳内で処理し切ってみてください。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
公開日時: 2021年12月14日20:49 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$
半角数字で入力してください。
公開日時: 2021年12月12日23:12 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ
【補助線主体の図形問題 #039】
今日は12月12日ということでそこかしこに12が現れる問題を用意してみました。補助線が活躍するのはいつも通りですし、暗算処理が可能な解法も仕込んであります。
年末に向かう忙しい時期かもしれませんが、ひと時の図形タイムをお過ごしください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
入力を一意に定めるための処置です。
たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。