数学の問題一覧

カテゴリ
以上
以下

求値問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

16

問題文

$x_1,x_2,\ldots,x_{24}$は正の実数とします。このとき、次の式の最小値を求めてください。
$$
\left(\sum_{n=1}^{24}\frac{n}{x_n}\right)\times\left(\sum_{n=1}^{24}nx_n\right)
$$

解答形式

半角数字で解答してください。

幾何作問練習2

Lamenta 自動ジャッジ 難易度:
11月前

16

問題文

$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。

解答形式

半角数字で解答してください。

座王001(N2)

shoko_math 自動ジャッジ 難易度:
16月前

16

問題文

正の整数 $n$ に対し,「 $n$ の各位の積の一の位」を $f(n)$ とします.
$f(1000)+f(1001)+f(1002)+\cdots+f(9998)+f(9999)$ の値を解答してください.

解答形式

半角数字で解答してください.

B

Furina 自動ジャッジ 難易度:
8月前

16

問題文

一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で入力してください。

整数問題(倍数)

zyogamaya 自動ジャッジ 難易度:
4年前

16

問題文

$f(x)=x^3+7x+6$の値が63の倍数になるような2桁の自然数$x$をすべて求めよ。

解答形式

解1つごとに改行して上から小さい順に半角数字で入力してください。$x=$は書かなくて良いです。

D

nmoon 自動ジャッジ 難易度:
20月前

16

問題文

正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.

$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$

このとき,正五角形 $ABCDE$ の一辺の長さを求めてください.
ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.

解答形式

答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.

2024年

poino 自動ジャッジ 難易度:
13月前

16

問題文

2024年は閏年なので、2024年M月D日という日付が存在するような$(M,D)$の組は366組存在します。このような組のうち、
$$\frac{2024}{M・D}$$
が整数となる組の個数を求めてください。

解答形式

半角数字で入力してください。

4年前

16

【補助線主体の図形問題 #009】
 今日の問題はとびっきりシンプルにしてみました。補助線でガリガリ計算することもできますが、ある発想があれば暗算一発で解くことも可能です。いろいろな可能性を探ってみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. この問題におけるキーワードをぼんやりと
  3. ヒント2の内容を具体的に
  4. 補助線と全体の方針をやや具体的に

bMC_H

bzuL 自動ジャッジ 難易度:
11月前

16

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.

除夜コン2023予選A2

shoko_math 自動ジャッジ 難易度:
18月前

16

問題文

実数 $x,y$ が $\bigg\{\begin{aligned}
20x+12y=20 \\
23x+31y=24
\end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.

解答形式

半角数字で解答してください.

2025問題

Yuu_0909 自動ジャッジ 難易度:
9月前

16

問題文

$2025^{2025}$の正の約数のうち、7で割ると1余るものの個数を求めよ。

解答形式

答えは整数なので、半角数字で答えてください。

Q3.素数

34tar0 自動ジャッジ 難易度:
9月前

16

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。