数学の問題一覧

カテゴリ
以上
以下

問題文

$a_{1} = 3$ , $a_{n+1} = \frac{a_{n}(a_{n}+1)}{2}$

とする($n$は自然数)。

また、$2$ 以上の自然数を $p$ とし、$a_{n}$を $3^{p}$ で割った時の余りを $R_{n}^{p}$ とする。

このとき、数列 {$R_{n}^{p}$} は
「周期の長さが $2×3^{p-2}$ 」であり、
かつ「 $0$ 以上 $3^{p}$ 未満の $3$ の倍数のうち $9$ の倍数ではない数」

をすべて巡回することを示せ。

解答形式

論述形式です。途中までの投稿もOKです。$p$ の値が小さければ、試してみると成立していることが分かります。

□に当てはまる数字は何?

k34 採点者ジャッジ 難易度:
2年前

0

2=1
4=11
8=7
25=6
42=21
100=□

ヒント
数字を変換してください。

logの式変形

aoneko 採点者ジャッジ 難易度:
2年前

0

問題文

$$
(a,M,N∈ℝ)
$$

$$
\begin{cases}p=log_{a}M・・・① \\ q=log_{M}N^{2}・・・②\end{cases}
$$
$$
(1)N=a^{p}のとき、qの値を求めなさい。
$$
$$
(2)N=pのとき、aをpとqで表すとa=p ^{◻︎}
$$
$$
⓪2pq\\ ①\frac{2}{pq}\\ ②2(p+q)\\ ③(pq)²
$$

解答形式

例)(1)q=1(2)⓪

内分とは

aoneko 採点者ジャッジ 難易度:
2年前

0

問題文

線分$AB$を$1:k(k>0)$に内分する点$P$と,線分$AB$の中点$M$がある。 $PB=3,PM=\frac{3}{4}$のとき,$k$の値を求めよ。
尚、答えは二つある。

・最初の一手が分からない場合はヒント1を見よ。
・場合分けの仕方が分からない場合はヒント2を見よ。

解答形式

例)k=1、1/2

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
2年前

0

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。

正多角形

Michael 自動ジャッジ 難易度:
2年前

0

問題文

正$n$角形$A_1,A_2,\cdots,A_n$と,同じ平面上に点$X$があって$$A_1^2= A_2^2+\cdots+A_n^2 $$を満たしている.このような点$X$が存在する最大の自然数$n$を求めよ.

解答形式

$n$の値を半角数字で1行目に入力してください。


問題文

定数$\,c\,$は$\,0<c\sqrt{c-1}<4\,$を満たす定数とする。
複素数列$\,\lbrace z_n \rbrace\,$は次の漸化式を満たし、初項$\,z_1\,$の実部は正である。
$$
z_{n+1}=\displaystyle \frac{1}{c}\left(z_n+\frac{1}{z_n}\right)\,\,\,\,\,(n=1,2,3,...)
$$
このとき$\,\displaystyle \lim_{ n \to \infty}|z_n-\alpha|=0\,$を満たすような複素数$\,\alpha\,$を求めよ。

解答形式

記述式(答えのみも歓迎)

[F]視力検査

fusshi 自動ジャッジ 難易度:
2年前

0

問題文

1
下の行列$A$に対して$f\colon \mathbb{R}^{6} \to \mathbb{R}$を$f(x)={}^{t}xAx$で定義する。${}^{t}x$は$x$の転置である。
$f$が原点で最大最小をとらない$a$の範囲を求めよ。

$$
A=\begin{pmatrix}
a& -3 & -a & 2 & 9 & a\\
-3 & -3 & 1 & 0 & 5 & 1\\
-a& 1 & 4 & 5 & 4 & 7\\
2& 0 & 5 & 1 & a & 1\\
9& 5& 4 & a & -4 & -4\\
a& 1 & 7 & 1 & -4 & a\\
\end{pmatrix}
$$

2
$$
X=\begin{pmatrix}
1& 6 & 0 & -2 & 1 & 0\\
2 & b& 2 & 1 & 4& 3\\
-1& 9 & -3 & 7 & 1 & -1\\
2& -1 & 0 & 1 & 6 & 0\\
-1& -4 & -3 & 2 & b & 2\\
-7& -1 & 1 & -1 & 9 & -3
\end{pmatrix}
$$
が実対角化可能な$b$の範囲を求めよ。

ヒント1は1のヒント、ヒント2-4が2のヒントです。

解答形式

$\displaystyle\frac{\fbox{ア}}{\fbox{イ}}<a<\frac{\fbox{ウ}}{\fbox{エ}}$、$\displaystyle\frac{\fbox{オ}}{\fbox{カ}}<b<\frac{\fbox{キ}}{\fbox{ク}}$
である。$\fbox{ア}$から順に1行ごとに答えよ。
ただし、任意の$a$で成立しないときは
$$
\fbox{ア}=00,\fbox{イ}=00,\fbox{ウ}=00,\fbox{エ}=00
$$
とし、任意の$a$で成立するときは
$$
\fbox{ア}=000,\fbox{イ}=000,\fbox{ウ}=000,\fbox{エ}=000
$$
のように答えてください。$b$も同様です。

求値問題4

Kinmokusei 自動ジャッジ 難易度:
2年前

0

問題文

△ABCにおいて、垂心をH、外心をOとするとAB//HOであった。このとき、∠Cの角度としてあり得る値の範囲を求めてください。
ただし、OとHが一致する場合は除きます。

解答形式

∠Cの範囲は度数法で表すと、$(0°<)\alpha°<C<\beta°(<180°)$となります。
$\alpha+\beta$を半角数字で解答してください。


問題文

同一平面上に2つの円$C_1$と$C_2$があり、2円の半径はいずれも1で、2円の中心間距離は4である。円$C_1$上に動点$P$をおき、点$P$から円$C_2$に2本の接線$l_1,l_2$を引く。また、$l_1,l_2$と円$C_2$の接点をそれぞれ$Q,R$とする。点$P$が円$C_1$上を動くとき、線分$QR$が通過しうる領域$X$の面積$S$を求めよ。

解答形式

答えは
$\displaystyle S=\frac{\sqrt{[ab]}}{[cde]}\log{\frac{[f]+[g]\sqrt{[hi]}}{[j]−[k]\sqrt{[l]}}}+\frac{π}{[m]}+\frac{[n]}{[op]}(\sqrt{[q]}−[r])$
の形になります。(a~rは一桁の自然数)
センターや共通テストのマークと同じ形式で数字を埋め、「abcdefghijklmnopqr」(18桁の自然数)を半角で入力してください。

Commutability

halphy ジャッジなし 難易度:
2年前

0

問題文

${\rm GL}(2,\mathbb{R})$ を $2\times 2$ 正則行列全体の集合とする.単位行列を $E$ とし,${\rm GL}(2,\mathbb{R})$ の部分集合 $S$ を

\begin{equation}
S=\{ A\in {\rm GL}(2,\mathbb{R})\mid \forall X\in {\rm GL}(2,\mathbb{R}), AX=XA\}
\end{equation}

で定めるとき

\begin{equation}
S=\{ rE \mid r\in \mathbb{R}, r\neq 0\}
\end{equation}

であることを証明せよ.

積分3

Ghaaj 自動ジャッジ 難易度:
2月前

0

問題文

$$
\prod_{n=1}^{\infty}\int_{0}^{1}\sqrt[2^{n}]{\tan\frac{\pi{x}}{2}}dx
$$
を求めよ.

解答形式

スペースを含めず, ASCII文字のみを用いて $\mathrm{\LaTeX}$ 形式で解答してください. $は必要ありません.

ただし, 文字や根号などの係数が分数の場合は
$$
\frac{3}{2}x\rightarrow\frac{3x}{2}
$$
のように, 文字を分子にまとめてください.