sha256

sha256

Twitter ID: @NABLA_DEL
幾何よわよわer
幾何よわよわer

OMCBにありそう

sha256 自動ジャッジ 難易度:
21日前

16

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)

二重根号が外れる条件

sha256 自動ジャッジ 難易度:
6月前

8

問題文

$\sqrt{N+\sqrt{8999\cdot9001}}$が実数となり二重根号が外れるとき、
整数$N$の値を全て求めてください。
ただし$9001$,$8999$は素数であることが保証されます。

また、二重根号が外れるとは、
その値を正の有理数$a,b\cdots$を用いて$\sqrt{a}+\sqrt{b}+\cdots$と表せることをいいます。

解答形式

$N$として考えうる全ての値の総和を求めてください。

三角関数の方程式

sha256 自動ジャッジ 難易度:
6月前

3

問題文

実数$x$についての以下の方程式を解いてください。($0\leq x\leq 1$)
$$
\tan(\color{red}{\sin^{-1}x})+\cot(\color{blue}{\cos^{-1}x})=\sin(\color{green}{\cot^{-1}x})+\cos(\color{purple}{\tan^{-1}x})
$$
ただし$\cot{x}$は$\frac{1}{\tan{x}}$を意味し、$\sin^{-1}x,\cos^{-1}x,\cot^{-1}x,\tan^{-1}x$でそれぞれの逆関数を表すこととします。

(※定義域と値域の取り方はWikipedia等にあるような一般的なものを用います)

解答形式

解は一つに定まり、整数$a,b$を用いて$x=\sqrt{a+\sqrt{b}}$と書けるので、$a^{10}+b^{10}$の値を半角英数字で入力してください。

7月前

3

問題文

以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)

$$
\begin{align}
f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\
&+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\
&-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2}
\end{align}
$$

ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。

解答形式

非負整数を半角英数字で入力してください。

ただの連立方程式

sha256 自動ジャッジ 難易度:
8月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。

多項式の割り算

sha256 自動ジャッジ 難易度:
8月前

9

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。

高校数学の問題

sha256 自動ジャッジ 難易度:
8月前

6

問題文

$x$についての重解を持たない実数係数の3次方程式を
$x^3+ax^2+bx+c=0$とおき、この3解を
$x_1,x_2,x_3 \ (x_1<x_2<x_3)$とします。

$b+1>a+c$かつ$x_1,x_2,x_3$がいずれも絶対値が5以下の整数のとき、
$(x_1,x_2,x_3)$の組の総数を求めてください。

解答形式

0以上の整数値を半角数字で入力してください


問題文

以下の値を求めてください。
$$
\begin{align}
\sum_{k=1}^{33333^2+200\cdot33333}\sqrt{\frac{2k+19999-2\sqrt{k^2+19999k+99990000}}{k^2+19999k+99990000}}
\end{align}
$$

解答形式

答えは互いに素な正整数$p,q$を用いて$\frac{p}{q}$と表されるので、
$p+q$の値を解答してください。


制作者の声

(誰かがもう作ってそうです...知っている方がいれば教えてほしいです)