方程式 $x^2+xy+y^3=7$ の表す図形を $y$ 方向に $\fbox{ (1) }$ 平行移動してから $\fbox{ (2) }$ に関して対称移動し,$x$ 方向に $\fbox{ (3) }$ 平行移動し,$\fbox{ (4) }$ に関して対称移動すると,方程式 $x^3-3x^2+xy-y^2+5y=0$ の表す図形となる.
以上の空欄 $(1)\sim(4)$ を適切に補充せよ.ただし,$(1),(3)$ には数値を答え,$(2),(4)$ には以下の語群から言葉を選び答えよ.
【語群】
$\mathrm A.\,x$ 軸
$\mathrm B.\,y$ 軸
$\mathrm C.$ 直線 $y=x$
答えは,空欄 $(1),(2),(3),(4)$ に当てはまる数または記号をそれぞれ $1,2,3,4$ 行目に記して答えよ.
ここで,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{-5}{13}$ なら
-5/13
と記すこと.
【解答例】
3
A
-5/13
B
面積 $1$ の平行四辺形 $\mathrm{ABCD}$ に対し,辺 $\mathrm{AB},\mathrm{BC},\mathrm{CD},\mathrm{DA}$ の中点をそれぞれ $\mathrm K,\mathrm L,\mathrm M,\mathrm N$ とする.$8$ 直線 $\mathrm{AL},\mathrm{AM},\mathrm{BM},\mathrm{BN},\mathrm{CN},\mathrm{CK},\mathrm{DK},\mathrm{DL}$ によって囲まれてできる $8$ 角形の面積を求めよ.
ただし,整数でない有理数は既約分数(分母は自然数,分子は整数で,互いに素)で表し,$\displaystyle\frac{5}{13}$ なら
5/13
のように記入して答えよ.
正 $6$ 角形 $\mathrm{ABCDEF}$ の中心を $\mathrm O$ とし,正 $6$ 角形の $6$ 個の辺と,$\mathrm O$ と各頂点を結ぶ $6$ 個の線分の,計 $12$ 個の線分を考える.このとき,これらの線分を辺とする正三角形が $6$ 個できている.これらの線分のうちの幾つかを取り除いて,正三角形が $1$ つもできない状態を作りたい.そのような取り除き方は何通りか求めよ.
AクラスとBクラスの生徒の合計は24人である.鉛筆とボールペンについて在庫が何本かあり,それらを生徒に配りたい.Aクラスの生徒に鉛筆を7本ずつ配ろうとすると最後の1人で足りなくなり,Bクラスの生徒にボールペンを6本ずつ配ろうとすると最後の1人で足りなくなる.そこで,逆にAクラスの生徒にボールペンを,Bクラスの生徒に鉛筆を配ると,クラス毎に同じ本数だけ,在庫をちょうど配りきることができた.(1人あたりに配った本数は,AクラスとBクラスでは同じとは限らない.)
Aクラスの生徒の人数としてありえる数を全て求めよ.
答えは,小さい順に空白を入れずカンマで区切って記入せよ.例えば,1と2と3があり得るなら
1,2,3
と答えよ.
$e$ は自然対数の底とする.座標平面上において
$\ x=t-e^{2t},\ y=2e^t+e^{-t}$
によってパラメータ表示される曲線について,$0\leqq t\leqq \log 2\sqrt2$ 部分の長さを求めよ.
答えは $\displaystyle\frac{\fbox{ (1) }\sqrt{\fbox{ (2) }}}{\fbox{ (3) }}$ の形で表されるので,空欄 $ (1),(2),(3)$ に当てはまる自然数をそれぞれ $1, 2, 3$ 行目に記して答えよ.ただし,最も簡単な形に直して答えること.
$n$ を非負整数とする.番号 $0,1,2,\cdots,2^n-1$ が $1$ つずつ振られた $2^n$ 枚の札が箱に入っている.「箱から札を無作為に $1$ 枚取り出し,札の番号を記録してから箱の中に戻す」という操作を考える.
以下の問いに答えよ.ただし,自然数 $N$ に対し,$\displaystyle\frac N{2^m}$ が自然数となるような最大の非負整数 $m$ を $f(N)$ で表すとする.
$(1)$ 操作を $1$ 回おこない,記録した番号を $b$ とする.このとき,$f({}_{2^n}\mathrm C_b)$ の期待値を求めよ.
$(2)$ 操作を $2$ 回おこない,記録した番号を $a,b$ とする.このとき,$f({}_{2^n+a}\mathrm C_b)$の期待値を求めよ.
ただし,解答に際しては $n=10$ のときの値を答えよ.
答えの値は, $\displaystyle \xi+\frac{\eta}{\zeta}$ のように,整数部分 $\xi$ と小数部分 $\displaystyle\frac{\eta}{\zeta}$ に分けて求める.ここで,$\eta$ は非負整数,$\zeta$ は自然数で,$\eta$ と $\zeta$ は互いに素とする.
$(1)$ の $\xi,\eta,\zeta$ の値をそれぞれ $1,2,3$ 行目に,$(2)$ の $\xi,\eta,\zeta$ の値をそれぞれ $4,5,6$ 行目に記して答えとせよ.
数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.