王道の整数問題

nemuri_neco 自動ジャッジ 難易度: 数学 > 高校数学
2022年9月7日22:25 正解数: 10 / 解答数: 13 (正答率: 76.9%) ギブアップ数: 0
整数問題 数A

全 13 件

回答日時 問題 解答者 結果
2025年10月9日17:55 王道の整数問題 Weskdohn
正解
2024年3月5日21:00 王道の整数問題 Prime-Quest
正解
2024年1月4日8:25 王道の整数問題 nmoon
正解
2023年1月3日21:31 王道の整数問題 huronntogarasuugaku
不正解
2022年12月12日10:43 王道の整数問題 ゲスト
正解
2022年12月7日1:22 王道の整数問題 ゲスト
正解
2022年11月5日7:17 王道の整数問題 hkd585
正解
2022年9月8日23:10 王道の整数問題 yorunojunin_i
正解
2022年9月8日14:46 王道の整数問題 naoperc
正解
2022年9月8日10:51 王道の整数問題 lyala
正解
2022年9月7日23:04 王道の整数問題 Reaponzu_domo
正解
2022年9月7日23:00 王道の整数問題 Reaponzu_domo
不正解
2022年9月7日22:55 王道の整数問題 Reaponzu_domo
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求角問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図の直角三角形について、青い部分の面積と緑色の部分の面積が等しいとき、$x$で示した角度を求めてください。

解答形式

度数法で求め、単位を付けずに0以上360未満の数字を半角で解答してください。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

17

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

求長問題17

Kinmokusei 自動ジャッジ 難易度:
4年前

14

問題文

図のように線分の長さが与えられたとき、青で示した線分の長さを求めてください。

解答形式

青い線分の長さを$x$とすると$x^2$は整数となるので、$x^2$を半角数字で解答してください。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

絶対値

ryno 自動ジャッジ 難易度:
3年前

11

問題文

2023-N=√(73x)とする。
Nが整数のとき、Nの絶対値が最小となるようなxを求めよ。ただし、xは自然数とする。

解答形式

そのまんま半角でどうぞ(`∇´)

4次方程式の整数解

footballOMF 自動ジャッジ 難易度:
3年前

14

問題文

$x$の4次方程式
$$
x^{4}-5x^{3}-2(n+7)x^{2}+5nx+n^{2}=0
$$が異なる4つの整数解をもつとき、整数$n$の値を求めよ。

解答形式

半角数学で解答してください。
また、$n$の値が2つ以上ある場合
改行して小さい順に並べてください。

(例) $n= -5 , -4$ のとき
-5
-4

京大風??

nemuri_neco 自動ジャッジ 難易度:
3年前

23

問題文

$\sin 1^{\circ} $と$\tan 1^{\circ} $を大小比較せよ。

解答形式

以下の3つのうちから選び、カタカナ1文字で答えてください。

ア)$\sin 1^{\circ}<\tan 1^{\circ}$
イ)$\sin 1^{\circ}=\tan 1^{\circ}$
ウ)$\sin 1^{\circ}>\tan 1^{\circ}$

2年前

4

【補助線主体の図形問題 #078】
 今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
5年前

9

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題18

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。

解答形式

半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
5年前

9

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。

3年前

18

問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。