図の条件の下で,半円の直径 $x$ を求めてください.
$x^2$ の値を半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
図の条件の下で,線分 $AB$ の長さを求めてください. ※orthocenter:垂心,circumcenter:外心
$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。
半角数字で解答してください。
図の条件の下で、赤で示した線分の長さ $x$ を求めてください。
$x^2$ の値を半角数字で解答してください。
図の条件の下で、青で示した三角形の面積を求めてください。
解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。
図の条件の下で,青で示した線分の長さ $x$ を求めてください.
$x^2$ は正整数となるので,これを解答してください.
図の条件の下で、青で示した三角形の面積 $x$ を求めてください。 ※ regular hexagon:正六角形
$x$ の値を半角数字で解答してください。
図の条件の下で、水色で示した三角形の面積を求めてください。
求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。
正方形と正三角形を組み合わせた以下の図形について、赤線の長さが6であるとき、図形全体の面積を求めてください。
図の条件の下で、赤で示した線分の長さを求めてください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。 ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。
図の条件の下で、青で示した線分の長さ $x$ を求めてください。 なお、図中の赤点(centroid)は三角形の重心です。
$x^2$ は正整数になるので、この値を解答してください。
図の条件の下で、緑で示した三角形の面積を求めてください。