金木犀の自作問題(2022/12/11)

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2022年12月11日0:58 正解数: 7 / 解答数: 7 (正答率: 100%) ギブアップ数: 0

全 7 件

回答日時 問題 解答者 結果
2024年11月11日13:17 金木犀の自作問題(2022/12/11) katsuo_temple
正解
2024年3月27日19:26 金木犀の自作問題(2022/12/11) hairtail
正解
2023年11月7日21:33 金木犀の自作問題(2022/12/11) natsuneko
正解
2023年10月12日21:28 金木犀の自作問題(2022/12/11) nmoon
正解
2022年12月14日14:56 金木犀の自作問題(2022/12/11) naoperc
正解
2022年12月11日16:08 金木犀の自作問題(2022/12/11) hkd585
正解
2022年12月11日16:05 金木犀の自作問題(2022/12/11) ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2年前

7

問題文

一辺が $8$ である正三角形 $ABC$ の内接円と $AB,BC,CA$ との接点を $K,L,M$ とします。$\triangle ABC$ の外接円上の点 $P$ について、$PK^2+PL^2+PM^2$ の値を求めてください。

解答形式

半角数字で解答してください。

2年前

8

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

24月前

10

問題文

図の条件の下で,半円の直径 $x$ を求めてください.

解答形式

$x^2$ の値を半角数字で解答してください.

2年前

11

問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

求角問題14

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形・正三角形・円が図のように配置されているとき、色を付けた角の角度の差(の絶対値)を解答してください。

解答形式

半角数字で0以上180未満の整数を解答してください。
「度」や「°」などの単位を付けずに解答してください。

2年前

7

問題文

図の条件の下で、青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

2年前

6

問題文

図の条件の下で、青で示した線分の長さ $x$ を求めてください。
なお、図中の赤点(centroid)は三角形の重心です。

解答形式

$x^2$ は正整数になるので、この値を解答してください。

求角問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

正六角形内に、図のように円を配置しました。青で示した角の大きさを求めてください。

解答形式

$\angle x=a°$ です。$a$ に当てはまる0以上180未満の数値を半角で回答してください。

2年前

7

問題文

図の条件の下で、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題17

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を弧度法で表すと、$x=\dfrac{a}{b}\pi$ です。$a+b$を解答してください。
ただし、$a,b$ は互いに素な正整数で、$0\leq \dfrac{a}{b} \lt 1$ を満たします。

求面積問題30

Kinmokusei 自動ジャッジ 難易度:
2年前

10

問題文

正三角形・長方形・半円を組み合わせた以下の図形について、図中緑の線分の長さが6のとき、図形全体の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題29

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図の条件において、$x$ の長さを求めてください。
なお、図中オレンジの点は直角三角形の内心です。

解答形式

解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。