金木犀の自作問題(2022/11/13)

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2022年11月13日3:01 正解数: 11 / 解答数: 12 (正答率: 91.7%) ギブアップ数: 0

全 12 件

回答日時 問題 解答者 結果
2024年3月27日19:20 金木犀の自作問題(2022/11/13) hairtail
正解
2024年3月6日19:01 金木犀の自作問題(2022/11/13) Prime-Quest
正解
2023年12月15日8:37 金木犀の自作問題(2022/11/13) RyAy
正解
2023年12月15日8:34 金木犀の自作問題(2022/11/13) RyAy
不正解
2023年11月20日18:04 金木犀の自作問題(2022/11/13) MARTH
正解
2023年11月12日15:16 金木犀の自作問題(2022/11/13) nmoon
正解
2023年10月30日19:50 金木犀の自作問題(2022/11/13) natsuneko
正解
2023年10月27日12:04 金木犀の自作問題(2022/11/13) Furina
正解
2023年10月16日15:13 金木犀の自作問題(2022/11/13) mochimochi
正解
2022年11月16日3:14 金木犀の自作問題(2022/11/13) naoperc
正解
2022年11月14日9:06 金木犀の自作問題(2022/11/13) ゲスト
正解
2022年11月13日8:04 金木犀の自作問題(2022/11/13) hkd585
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

24月前

12

問題文

図の条件の下で、緑の線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

19月前

21

問題文

図の条件の下で、青で示した角の大きさ $x$ を求めてください。

解答形式

$x=a$ 度($0\leq a\lt 180$)です。整数 $a$ の値を半角数字で解答してください。

23月前

7

問題文

図の条件の下で、赤で示した線分の長さ $x$ を求めてください。

解答形式

$x^2$ の値を半角数字で解答してください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

22月前

10

問題文

図の条件の下で、青で示した三角形の面積を求めてください。

解答形式

解答は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。

Combination

Gauss 自動ジャッジ 難易度:
2年前

14

問題文

$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$

解答形式

半角数字で入力してください。

2年前

12

問題文

図の条件の下で,青で示した線分の長さ $x$ を求めてください.

解答形式

$x^2$ は正整数となるので,これを解答してください.

商と余り

miq_39 自動ジャッジ 難易度:
6月前

10

問題文

自然数 $n$ に対し,次のように定められた数列 $\{a_{n}\},\{b_{n}\},\{c_{n}\}$ がある:

  • $a_{1}=2023^{2023}$
  • $a_{n}$ を $120$ で割った商が $b_{n}$,余りが $c_{n}$
  • $a_{n+1}=b_{n}+c_{n}$

このとき,$\lim_{n\to\infty}a_{n}$ を求めよ.

解答形式

半角数字で解答してください.

10月前

16

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

14

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ある定理の紹介
  3. ヒント1・2の内容をやや具体的に
18月前

6

問題文

図の条件の下で,線分 $AB$ の長さを求めてください.
※orthocenter:垂心,circumcenter:外心

解答形式

$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

21月前

14

問題文

図の条件の下で、ピンクで示した線分の長さを求めてください。

解答形式

互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください。