ダーツ

J_Koizumi_144 自動ジャッジ 難易度: 数学 > 高校数学
2024年1月2日1:57 正解数: 4 / 解答数: 9 (正答率: 44.4%) ギブアップ数: 2

問題文

$p$を$0$以上$1$以下の実数とします.$A$と$B$の二人は,円形の的を用いて次のようなダーツ遊びをします.

  • $A,B,A,B,\dots$の順に,的に向かって交互に矢を投げる.
  • $A$は直前に$B$が投げた矢よりも中心に近い位置に矢が刺されば成功となる.ただし$1$回目は必ず成功とみなす.
  • $B$は直前に$A$が投げた矢よりも中心から遠い位置に矢が刺されば成功となる.
  • $n$回目に矢を投げたプレイヤーは,成功すると$p^n$点を得る.成功しなかった場合,その時点でゲームを終了する.

矢の刺さる位置が的の中で一様ランダムに決まると仮定するとき,ゲームが終了するまでに$A$が得られる得点の期待値を$f(p)$とし,$B$が得られる得点の期待値を$g(p)$とします.$f(p)=\dfrac{20}{21}$であるとき,$g(p)$の値は互いに素な正整数$a,b$を用いて$\dfrac{b}{a}$と表せるので,$a+b$を解答してください.

解答形式

半角数字で入力してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

レート当てゲーム

J_Koizumi_144 自動ジャッジ 難易度:
9月前

19

問題文

ポロロッカ王国には$10$個のサッカーチームがあります.各チームにはレートと呼ばれる$0$以上$10$以下の整数が定まっており,レートの異なる$2$チームの試合では,必ずレートの大きい方が勝ちます.レートは秘密にされており,国民は知ることができません.
あるとき,これら$10$個のチームで総当たり戦(全$45$試合)が行われ,引き分けはありませんでした.ポロロッカ王国民であるAさんが,この総当たり戦の結果から各チームのレートを推測しようとしたところ,あり得るパターンは$N$種類存在しました.$N$として考えられる値の合計を求めてください.

解答形式

半角数字で入力してください.

OMC没問4

natsuneko 自動ジャッジ 難易度:
11月前

24

問題文

下図のようにブロックがピラミッド状に積んであり,各ブロックに $1$ つずつ整数を割り当てていきます.このとき,最下段に並ぶブロックが $N$ 個であるとき,以下の条件を満たすように整数を割り当てることとします.
・ 最下段の左端のブロックには $1$ を,右端のブロックには $N−2$ を,また左から $i$ 番目のブロック $(2 \leq i \leq N−1)$ には $i−1$ をそれぞれ割り当てる.
・最下段以外のブロックには,そのすぐ下に位置する左右 $2$ つのブロックに割り当てられた数の積を割り当てる.

最も上にあるブロックに割り当てられた整数を $N−1$ で割った余りを $f(N)$ とします.このとき,$f(10^9 + 8) + f(10^9 + 404)$ の値を解答して下さい.ただし, $10^9 + 7, \ 5×10^8 + 3, \ 10^9 + 403, \ 5×10^8 + 201$ はいずれも素数であることは既知としてよいです.

解答形式

例)半角数字で解答して下さい.

4月前

8

問題文

$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。

条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。

解答形式

条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

いろんな選び方

noname 自動ジャッジ 難易度:
3月前

3

$n$を自然数とします。$n$個の複素数からなる組$z(n)=(z_1,z_2,z_3,……z_n)$について、$z(n)$の要素からの異なる$i$個の選び方全てについてそれら(選んだ$i$個の要素)の総積を求め、それら(全ての選び方)の総和を$S(z(n),i)$とします。ある組$z(2024)$が存在して$$S(z(2024),1)=S(z(2024),2)=S(z(2024),3)=……S(z(2024),2022)=0,S(z(2024),2024)=-2$$を満たすとき、$$(z_1)^{2024}+(z_2)^{2024}+(z_3)^{2024}+……+(z_{2024})^{2024}$$の値は実数になるのでそれを計算して答えてください。

解答形式

値を1行目に半角で入力してください。

No.09 関数の値と点対称

Prime-Quest 自動ジャッジ 難易度:
8月前

1

問題

次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.

  • 二次関数 $y=f(x)$ のグラフは曲線 $y=x^2$ と接しつつ点 $(a,b)$ で対称となる.

解答形式

$100$ 倍した整数部分を半角数字で入力してください.

※ 問題を一部修正しました.今後も手直しが続く可能性があります.

Make 10

J_Koizumi_144 自動ジャッジ 難易度:
10月前

15

$100\times 100$のマス目に整数(負でもよい)を書き込んで、各行・各列の積が全て$10$になるようにしたものを良い盤面と呼びます。良い盤面に書かれた数の$2$乗和をその良い盤面のスコアとします。
すべての良い盤面にわたるスコアの総和を$M$とするとき、$M$が$2$で割り切れる最大の回数を求めてください。

F

Furina 自動ジャッジ 難易度:
5月前

11

問題文

$AB<AC$ なる三角形 $ABC$ について,$\angle A$ (内角) の二等分線と $BC$,円 $ABC$ の交点をそれぞれ $D, M(\neq A)$,$A$ から $BC$ に下ろした垂線の足を $E$,$AC$ の中点を $N$,円 $ENC$ と円 $ABC$ の交点を $X(\neq C)$,円 $XMD$ と $BC$ の交点を $P(\neq D)$,$PM$ の中点を $Q$ とします.
$$AB=9, AC=14, QN=8$$
であるとき,$BC$ の長さは正整数 $a, b, c$ を用いて $\dfrac{a\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選N3

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$2023$ や $1231$ のように $2$ と $3$ がこの順に連続して表れる $4$ 桁の正の整数(すなわち,$1000$ 以上 $9999$ 以下の整数)の総和を求めてください.

解答形式

半角数字で解答してください.

除夜コン2023予選C4

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$8\times8$ のマス目に対し,上から $1$ 行目かつ左から $1$ 列目にあるマス目には黒を表にしてオセロの駒を置き, 残りの $63$ マスには隣り合うマスに置かれた2つの駒が同じ色を表にして置かれないようにオセロの駒を $1$ つずつ置きました.
このとき,「行もしくは列を $1$ つ選び,そこに置かれた $8$ つの駒を全て同時に裏返す」という操作を繰り返したところ,すべての駒が黒を表にして置かれました.
このときの操作回数としてあり得る最小の値を $m$ とおくとき,操作回数が $m$ であって,最終的にすべての駒が黒を表にして置かれるような操作方法の総数を求めてください.

解答形式

半角数字で解答してください.

除夜コン2023本選A2

shoko_math 自動ジャッジ 難易度:
10月前

3

問題文

正の実数 $a,b,c,d$ が $\Bigg\{\begin{aligned}
a+\dfrac{b}{4}+\dfrac{c}{9}+\dfrac{d}{16}=25 \\
\dfrac{49}{a}+\dfrac{64}{b}+\dfrac{81}{c}+\dfrac{100}{d}=36
\end{aligned}$ の $2$ 式を満たすとき,$d$ の最小値は最大公約数が $1$ の正の整数 $p,q,r$ を用いて $\dfrac{p-\sqrt{q}}{r}$ と表されるので,$p+q+r$ の値を解答してください.

解答形式

半角数字で解答してください.

OMC没問5

natsuneko 自動ジャッジ 難易度:
10月前

2

問題文

鋭角三角形 $ABC$ について, 垂心を $H$, 内心を $I$, 外心を $O$ とし, また, $C$ から $AB$ に下した垂線の足を $D$, $B$ から $AC$ に下した垂線の足を $E$, $A$ から $BC$ に下した垂線の足を $F$ とします. すると, $H,I,O$ は相異なり, かつ $AH=AO=10,HI:HO=41:80$ が成立しました. このとき, $DF+EF$ は互いに素な正整数 $a,b$ と平方因子を持たない正整数 $c$ によって, $\cfrac{b \sqrt{c}}{a}​​$ と表されるため, $a+b+c$ の値を解答して下さい.

解答形式

半角整数値で解答して下さい.