二項係数の極限

n01v4me 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月26日11:15 正解数: 5 / 解答数: 8 (正答率: 62.5%) ギブアップ数: 2

問題文

次の極限を求めてください。
$$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{{}_nC_k}{(k+1)(n+1)^k}$$

解答形式

解答に分数や特殊な文字、累乗を使用したい場合はTeX記法に則ってください。$は必要ありません。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

複素数の数列

RentoOre 採点者ジャッジ 難易度:
8月前

2

問題文

複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は
$$
z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...)
$$
を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。

解答形式

この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。

勇者の行く手を阻むもの

kusu394 自動ジャッジ 難易度:
5月前

1

問題文

勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.

しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.

勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

漸化式と極限

nanohana 自動ジャッジ 難易度:
2月前

3

問題文

$$S_{n}=(n-2)a_{n+1}$$$$a_{1}=1$$$$\lim_{n\to \infty}S_{n}が有限の値に収束する。$$$$このとき、a_{3}の値を求めよ。$$$$ただし、S_n=a_1+a_2+・・・+a_nである。$$

解答形式

$$a_{3}の値を半角数字で入力してください。$$

7月前

3

問題文

以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)

$$
\begin{align}
f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\
&+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\
&-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2}
\end{align}
$$

ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。

解答形式

非負整数を半角英数字で入力してください。

4月前

2

問題文

三辺の長さがa!、b!、c!(a,b,cは自然数)となる直角三角形は存在するか。

解答形式

存在するならば組(a,b,c)を1組入力してください。存在しないならば、存在しないことを証明してください。(簡単にでいいです)

極大値

Ultimate 自動ジャッジ 難易度:
4月前

3

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。

展開図

Fuji495616 自動ジャッジ 難易度:
8月前

6

問題文

図のような展開図を組み立てできる立体の体積は何㎤ですか。ただし、図は辺の長さが等しい正三角形と正方形と正六角形を組み合わせた図形で、正方形の面積は18㎠です。

解答形式

半角数字で入力してください。
例)10

三角関数の方程式

sha256 自動ジャッジ 難易度:
7月前

3

問題文

実数$x$についての以下の方程式を解いてください。($0\leq x\leq 1$)
$$
\tan(\color{red}{\sin^{-1}x})+\cot(\color{blue}{\cos^{-1}x})=\sin(\color{green}{\cot^{-1}x})+\cos(\color{purple}{\tan^{-1}x})
$$
ただし$\cot{x}$は$\frac{1}{\tan{x}}$を意味し、$\sin^{-1}x,\cos^{-1}x,\cot^{-1}x,\tan^{-1}x$でそれぞれの逆関数を表すこととします。

(※定義域と値域の取り方はWikipedia等にあるような一般的なものを用います)

解答形式

解は一つに定まり、整数$a,b$を用いて$x=\sqrt{a+\sqrt{b}}$と書けるので、$a^{10}+b^{10}$の値を半角英数字で入力してください。

整数問題

rt3010 採点者ジャッジ 難易度:
8月前

3

問題文

$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。

解答形式

$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。


問題

$n$を $0$ でない実数とします。以下の定積分を求めてください。

解答形式

答えだけでもいいですが、方針があると嬉しいです。

6月前

4

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

積分方程式

nanohana 自動ジャッジ 難易度:
24日前

3

問題文

f(x)は連続で微分可能である。
次の式を満たすf(x)を求めよ。$$f(x)=2f(-x)+ \int_{0}^{x^{2}}f'(\sqrt{t})dt$$

解答形式

f(2024)の値を半角数字で入力してください。