G414xy 自動ジャッジ 難易度: 数学 > 競技数学
2024年4月3日18:24 正解数: 23 / 解答数: 51 (正答率: 45.1%) ギブアップ数: 0

全 51 件

回答日時 問題 解答者 結果
2024年4月3日19:09 naoperc
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2の累乗

G414xy 自動ジャッジ 難易度:
14月前

27

問題文

2^nの1桁目が9となる最小のnを求めよ。

解答形式

半角数字で答えること。

素数の確率問題

koukiyayo 自動ジャッジ 難易度:
14月前

37

問題文

$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.

例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります.
$17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.

回答形式

非負整数を半角で回答してください。

問題文を一部変更しましたが答える内容は変わっていません。

対角線の本数

noname 自動ジャッジ 難易度:
14月前

27

問題文

正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。

解答形式

$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。
例:2,3と答えたい時
2
3
と解答してください。

三乗の和

noname 自動ジャッジ 難易度:
12月前

21

問題文

連続する8つの正整数の三乗の和で表せる数のうち、2000に最も近いものを求めよ。

解答形式

半角で入力してください。

新春問題

arc_sin 自動ジャッジ 難易度:
18月前

31

問題文

2024^2023の正の約数の個数はいくつか?

解答形式

半角で回答
例)100


問題文

$\dfrac{777777777}{888888}$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
15月前

23

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

orangekidの異常な愛情

orangekid 自動ジャッジ 難易度:
13月前

32

$\text{n-テトロミノ}$とは、正方形を四つ、下のようにつなげた図形です。

orangekidくんはこの図形が大好きなので、下の図のような形をした画用紙からなるべく多くの$\text{n-テトロミノ}$を切り出したいです。

$\text{n-テトロミノ}$を裏返しの状態で切り出してもよいものとするとき、orangekidくんは最大何個の$\text{n-テトロミノ}$を切り出せるでしょうか。
「個」はつけずに、整数値のみで答えてください。

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
15月前

44

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.

見掛け倒し

mahiro 自動ジャッジ 難易度:
19月前

34

問題文

$2^{20}!!$ は $2$ で何回割り切れますか?

解答形式

半角数字でお答え下さい。
計算機はご自由にお使いください。

座王001(サドンデス1)

shoko_math 自動ジャッジ 難易度:
15月前

20

問題文

$m$ を正の整数とします.「任意の正の整数 $n$ について,「 $n^3$ が $10!$ の倍数ならば $n^2$ は $m$ の倍数である」が成り立つ」という主張が正しくなるような最大の $m$ を求めてください.

解答形式

半角数字で解答してください.

余りの計算

noname 採点者ジャッジ 難易度:
16月前

9

$1^{2024}+2^{2024}+3^{2024}+4^{2024}+5^{2024}+…+2023^{2024}+2024^{2024}$を$17$で割った余りを求めよ。

元の問題を書き換えて別の問題にしました。前の問題は解いていただけなかったので別の問題に変えました。

解答形式

余りを自然数でお答えください