孤独な頂点

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年5月4日0:04 正解数: 2 / 解答数: 4 (正答率: 50%) ギブアップ数: 1

全 4 件

回答日時 問題 解答者 結果
2025年5月14日17:49 孤独な頂点 Weskdohn
正解
2024年7月11日16:24 孤独な頂点 aaabbb
正解
2024年7月11日16:24 孤独な頂点 aaabbb
不正解
2024年7月11日16:23 孤独な頂点 aaabbb
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

突き刺す直線

kusu394 自動ジャッジ 難易度:
15月前

3

問題文

座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.

  • $\ell$ と直線 $AB$ は点 $P$ で交わり, $P$ の $x$ 座標は $-3000$ より大きく $0$ より小さい.
  • $\ell$ と直線 $AC$ は点 $Q$ で交わり, $Q$ の $x$ 座標は $3000$ より大きい.
  • 線分 $BP$ の長さと線分 $CQ$ の長さは整数値である.
  • $\ell$ と $x$ 軸の交点を $R$ とするとき,$\triangle RPB$ と $\triangle RQC$ の面積は等しい.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

tanと等差数列

kusu394 自動ジャッジ 難易度:
16月前

6

問題文

座標平面上の $2$ 点 $A(14,0),B(-14,0)$ を考えます. また, $x$ 軸上にない格子点 $C (p,q)$ を $\triangle ABC$ が直角三角形とならないようにとります.
$$\tan \angle{ABC},\ \tan \angle{BCA},\ \tan \angle{CAB}$$
がこの順に等差数列となるとき, 点 $C$ として考えられるすべての座標に対して $p^2+q^2$ の総和を解答してください. ただし, 格子点とは $x$ 座標も $y$ 座標も整数であるような点のことを指します.

解答形式

答えは正の整数となるので, その整数値を半角で解答してください.

2のべき乗と三角形

kusu394 自動ジャッジ 難易度:
10月前

5

問題文

$a + b + c = 999$ かつ $a \le b \le c$ を満たす正整数の組 $(a, b, c)$ であって,
$2^a, 2^b, 2^c$ が非退化な三角形の三辺の長さとなるものは何通りありますか.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

第1問

sulippa 採点者ジャッジ 難易度:
4月前

1

設問1

数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

半角1スペースで答えのみ

不等式

skimer 採点者ジャッジ 難易度:
4月前

1

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください


問題文

$f_0=0,f_1=1,f_{n+2}=f_{n+1}+f_n$で定義された数列において、$f_p$が$p$の倍数となるような素数$p$を全て求めてください。

解答形式

計算式全てを書く必要はないので論証の概略と答えを書いてください。

11月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

No.07 三角形と必要条件

Prime-Quest 自動ジャッジ 難易度:
19月前

1

問題

整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.

  • ある非負偶数 $k$ で $z_k\lt 2$ は,辺長 $x^3+8,\ y^3+8,\ 6xy+8$ の三角形が存在する必要条件である.

解答形式

半角数字で入力してください.

第4問

sulippa 採点者ジャッジ 難易度:
4月前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。

求値幾何

Ryomanic 自動ジャッジ 難易度:
16日前

1

問題文

円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。
$$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$
の時、四角形EIFI’の面積を求めよ。

解答形式

求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
6月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8

没のなれの果て

shippe 自動ジャッジ 難易度:
9日前

1

問題文

$$
p^{q+r} +q^{p+r} +r^{p+q}が素数となるような10以下の素数の組(p,q,r)の個数を求めよ。
$$

解答形式

半角数字で解答してください。覚悟して解いてください。