全 4 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.
答えは正の整数値となるので,その整数値を半角で入力してください.
座標平面上の $2$ 点 $A(14,0),B(-14,0)$ を考えます. また, $x$ 軸上にない格子点 $C (p,q)$ を $\triangle ABC$ が直角三角形とならないようにとります. $$\tan \angle{ABC},\ \tan \angle{BCA},\ \tan \angle{CAB}$$ がこの順に等差数列となるとき, 点 $C$ として考えられるすべての座標に対して $p^2+q^2$ の総和を解答してください. ただし, 格子点とは $x$ 座標も $y$ 座標も整数であるような点のことを指します.
答えは正の整数となるので, その整数値を半角で解答してください.
$a + b + c = 999$ かつ $a \le b \le c$ を満たす正整数の組 $(a, b, c)$ であって, $2^a, 2^b, 2^c$ が非退化な三角形の三辺の長さとなるものは何通りありますか.
設問4
数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式 $$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$ を満たす。一般項 $a_n$ を求めよ。
例)ひらがなで入力してください。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8
設問1
数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。
半角1スペースで答えのみ
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.
$a>0,b>0$ のとき、 $a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ
記述形式でお願いします 入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください
設問9
数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。
$f_0=0,f_1=1,f_{n+2}=f_{n+1}+f_n$で定義された数列において、$f_p$が$p$の倍数となるような素数$p$を全て求めてください。
計算式全てを書く必要はないので論証の概略と答えを書いてください。
$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$
$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。