Loading [MathJax]/jax/output/CommonHTML/jax.js

TMCMC001(B)

Tiri7_Ma13a_ 自動ジャッジ 難易度: 数学
2024年6月22日21:00 正解数: 51 / 解答数: 77 (正答率: 66.2%) ギブアップ数: 2
この問題はコンテスト「TMCMC001」の問題です。

全 77 件

回答日時 問題 解答者 結果
2025年4月15日17:07 TMCMC001(B) noname
正解
2025年3月16日0:29 TMCMC001(B) Attsu
正解
2025年1月5日14:54 TMCMC001(B) Mid_math28
不正解
2024年12月16日11:52 TMCMC001(B) koukiyayo
不正解
2024年12月13日14:54 TMCMC001(B) koukiyayo
不正解
2024年12月3日19:42 TMCMC001(B) mamemame-study
不正解
2024年11月25日20:37 TMCMC001(B) Waiting_Matumura
正解
2024年11月2日22:06 TMCMC001(B) ゲスト
正解
2024年10月11日2:13 TMCMC001(B) yuyusama
正解
2024年8月26日12:41 TMCMC001(B) YoneSauce
正解
2024年8月26日12:41 TMCMC001(B) YoneSauce
正解
2024年7月31日15:25 TMCMC001(B) poino
正解
2024年7月19日21:21 TMCMC001(B) ゲスト
不正解
2024年7月15日18:24 TMCMC001(B) Americium243
正解
2024年7月15日18:22 TMCMC001(B) Americium243
不正解
2024年7月10日20:28 TMCMC001(B) kurao
正解
2024年7月10日20:27 TMCMC001(B) kurao
不正解
2024年7月7日1:22 TMCMC001(B) roofs
正解
2024年7月2日12:05 TMCMC001(B) imabc
正解
2024年6月30日21:19 TMCMC001(B) Weskdohn
正解
2024年6月30日21:15 TMCMC001(B) Weskdohn
不正解
2024年6月30日21:12 TMCMC001(B) Weskdohn
不正解
2024年6月30日11:55 TMCMC001(B) yura
正解
2024年6月27日14:14 TMCMC001(B) lemonoilemon
正解
2024年6月27日7:42 TMCMC001(B) noname
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

TMCMC001(A)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
13月前

72

問題文

 13 つ,21 つ,72 つを全て使い,それらを並べ替えてできた長さ 6 の文字列は全部でいくつありますか?
 ただし,同じ文字は区別しません.

解答形式

非負整数を半角で解答してください.

TMCMC001(C)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
13月前

66

問題文

 5 種類の大きさ 1,2,3,4,5 の服がそれぞれ 3 枚ずつあり,合計 15 枚にはすべてに相異なる色が着色されています.A さん,B さん,C さんの 3 人は,これら 15 枚の服からそれぞれ 1 枚ずつ異なる服を選んで着ます.ここで,3 人が着ることのできる服の大きさは以下の通りです.

  • A さんは,大きさ 1,2,3,4,5 全てを着ることができる.
  • B さんは,大きさ 1,2,3 を着ることができる.
  • C さんは,大きさ 3,4,5 を着ることができる.

 このとき,3 人の服の選び方はいくつありますか?
 ただし,3 人全体で見て同じ服を選んでいても着ている人が異なる場合違う選び方として区別します.

追記:6/26
解説の誤字を修正しました。ご指摘ありがとうございます。

解答形式

非負整数を半角で解答してください.

TMCMC001(D)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
13月前

63

問題文

 ある教室には,縦 6 列,横 3 列で横長の机が並んでおり,1 つの机ごとに横並びに 2 つずつ座席があるため,36 個の座席と 18 個の机があります.A くん,B くん,C くんの 3 人が,それぞれ 36 個の座席から 1 つずつ異なる座席を選び座ります.
 ここで,以下の条件を満たしました.

  • B くんは,A くんの座っている座席のある机から縦の列で見たときに 3 列以上後ろの机にある座席のみに座る.例えば,A くんが縦 1 列目の机にある座席に座っている場合,B くんは縦 4,5,6 列目の机にある座席に座っていることになる.
  • 机の縦の列,横の列どちらで見たときも,3 人は全員相異なる列の机にある座席に座っている.

 このとき,3 人の座席の座り方は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

TMCMC001(E)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
13月前

55

問題文

 p,d,q,b,a,e,s の 7 文字を使い,6 文字の文字列を作ることを考えます.(使わない文字が必ず 1 文字以上出てきます.)
 文字列において,1,6 文字目,2,5 文字目,3,4 文字目が後述の対応する文字どうしになるようにする必要があります.
 対応する文字は以下のとおりです.

  • p と d
  • q と b
  • a と e
  • s と s

 なお,d と p のように,対応する文字どうしであり指定された文字目に 2 文字がいれば文字列内で順序が入れ替わってもよいものとします.
 また,この文字列内において,同じ文字を使えるのは 2 回までとします.
 以上の条件を全て満たした文字列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

TMCMC001(F)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
13月前

51

問題文

 3×4 で構成された 12 マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
 マスを塗るためには持ち点を消費します.持ち点は初期状態では 12 点です.
 マス目の色は,以下の通りに塗り替えることができます:

  • 持ち点を 1 消費して,任意の白色のマスを 1 つ灰色にする.
  • 持ち点を 1 消費して,任意の灰色のマスを 1 つ黒色にする.
  • 持ち点を 2 消費して,任意の黒色のマスを 1 つ白色に戻す.

 また,マス目を塗る上で以下を守る必要があります:

  • 全ての持ち点を過不足なく消費しなければならない.
  • 全ての持ち点を消費したとき,全てのマスが白色であってはならない.

 このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
 ただし,反転・回転して一致するものは区別します.

解答形式

非負整数を半角で解答してください.

1を含んだ規則的な数列

Tiri7_Ma13a_ 自動ジャッジ 難易度:
15月前

51

問題文

 地理奈ちゃんは,1 を含んだ数列をいくつか思い浮かべようとしています.
 そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:

  • 1 以上 9 以下の整数から 3 つを選んでいる数列である.
  • その数列は公差が 0 でない等差数列である.
  • 数列のどこか 1 項に必ず 1 を含んでいる.

 この時,良い数列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

nCrの足し算

tsukemono 自動ジャッジ 難易度:
13月前

61

問題文

次の計算をせよ。
12C1+12C2+12C3++12C12

解答形式

半角算用数字で解答してください

B

Furina 自動ジャッジ 難易度:
13月前

80

問題文

一辺の長さが 4 の正三角形 ABC について,BC の中点を M とし,線分 BC 上に BD=1 なる点 D をとります.3ABD を通る円と3ACM を通る円との交点を X とするとき,AX の長さの 2 乗を求めてください.ただし,求める値は,互いに素な正整数 a,b を用いて ba と表せるので,a+b の値を解答してください.

解答形式

半角数字で解答してください.

15月前

80

問題文

 地理奈ちゃんは,10 面サイコロを 4 つ持っており,それを 4 つ全て同時に 1 回振ることを考えます.ここでの 10 面サイコロは,1 以上 10 以下の整数の目が同様に確からしい確率で 1 つ出るサイコロとします.
 また,サイコロの出目により,それぞれのサイコロに対して,成功数を以下のように定義します.

  • 出目が 1 のとき 2
  • 出目が 2 以上 7 以下のとき 1
  • 出目が 8 以上 9 以下のとき 0
  • 出目が 10 のとき 1

 この時,4 つのサイコロを振って,その成功数の合計が 0 以下になる確率は,互いに素な正整数 a,b を用いて ab と表されるので,a+b を解答してください.

【追記】
難しすぎるという意見をいただいたので難易度を2→3に変更しました。

解答形式

非負整数を半角で解答してください.

15月前

122

問題文

パーフェクトさんすう教室 -Normal- (問題文)
さるのは答えが9になる足し算の式を自分で一つ思いついたようです。さるのの考えた足し算の式を当ててください。
ただし、さるのの考えた足し算の式が解答した文字列の(連続していなくても良い)部分文字列にあれば正解とします。

この問題は長い文字列を解答すれば正解することが出来ますが、あなたはこの問題にもっとスマートに解答したいです。
全ての 答えが9になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが31の文字列を解答してください。
なお、答えが9になる足し算の式 を(連続していなくても良い)部分文字列として含む長さが30以下の文字列は存在しないことが証明できます。

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式 (重要)

ジャッジの都合上、特殊な解答形式になっています。
答えを改行区切りで16回連続して解答してください。「」は付けないでください。(4回 全体をコピー&ペーストすると16個になります)
必ず同じ文字列を16連続で解答してください。
解答の1行目に謎の空間が出来る事がありますが、謎の空間があっても正解判定になる事が確認されています。もし不安だったらsimasimaのXのDMに送るか質問をしてください。
例えば「129+1341398+89006」と解答したい場合は次のように解答してください。
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006
129+1341398+89006

A

Furina 自動ジャッジ 難易度:
13月前

129

問題文

AB=13,AC=15 なる三角形 ABC について,直線 BC 上に AP=12 なる点 P がただ一つ存在しました.三角形 ABC の面積としてありうる値の総和を求めてください.

解答形式

半角数字で解答してください.

15月前

97

問題文

さるのは答えが9になる足し算の式を知りたいです。そのような足し算の式は沢山ありますが、そのうち一つを解答してください。(答えは複数存在しますが、どれを解答しても正解になります)

例えば、答えが5になる足し算になる式として「3+2」「1+1+1+1+1」「5」などが挙げられます。
「1+2×2」や「0+1+4」や「0.5+4.5」や「-1+6」や「+3+2」や「⑨」などは足し算の式ではない事に注意してください。

足し算の式の厳密な定義 (これは全難易度で共通です)
足し算の式の各文字は1,2,3,4,5,6,7,8,9,+のいずれかで、先頭と末尾の文字は数字で、+どうしは連続しない。
その足し算の式を通常の数式として計算した結果がその足し算の式の答えになる。

解答形式

半角で1行で解答してください。「」は付けないでください
例えば「3+2+1」と解答したい場合は次のように解答してください
3+2+1