E

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月9日21:00 正解数: 6 / 解答数: 6 (正答率: 100%) ギブアップ数: 2
この問題はコンテスト「N村杯Shortlist 001」の問題です。

問題文

円 $\Omega$ があり,その周上に点 $P, Q$ があります.いま,$\Omega$ の弧 $PQ$ 上に $2$ 点 $A, B$ を,$P, A, B, Q$ がこの順にあるように取り,線分 $PQ$ 上に点 $C$ を取ると,三角形 $ABC$ の外接円は辺 $PQ$ に接しました.いま,$CQ$ の中点を $M$ とすると,$BM, AQ$ は三角形 $ABC$ の外接円上で交わったのでこの点を $R$ とします.いま,三角形 $ABC$ の外接円と三角形 $PQR$ の外接円の $R$ でない交点を $S$ とするとき,
$$AS=4, AP=2\sqrt{21}, BC=7$$
が成立しました.このとき,$BQ$ の長さは正整数 $a, b, c$ を用いて $\dfrac{\sqrt a-\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

F

Furina 自動ジャッジ 難易度:
5月前

11

問題文

$AB<AC$ なる三角形 $ABC$ について,$\angle A$ (内角) の二等分線と $BC$,円 $ABC$ の交点をそれぞれ $D, M(\neq A)$,$A$ から $BC$ に下ろした垂線の足を $E$,$AC$ の中点を $N$,円 $ENC$ と円 $ABC$ の交点を $X(\neq C)$,円 $XMD$ と $BC$ の交点を $P(\neq D)$,$PM$ の中点を $Q$ とします.
$$AB=9, AC=14, QN=8$$
であるとき,$BC$ の長さは正整数 $a, b, c$ を用いて $\dfrac{a\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

8月前

6

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

外心と内心

nmoon 自動ジャッジ 難易度:
8月前

6

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

素直な整数

kusu394 自動ジャッジ 難易度:
5月前

12

問題文

正整数 $N$ が 素直 であるとは以下の条件をともに満たすことを言います.

  • $N$ は十進法表記で $6$ 桁であり,各桁に $0$ も $9$ も含まない数である.
  • $N$ の上 $i$ 桁目を $a_i$ とするとき,「$a_1 \le a_2 \le \cdots \le a_6$」もしくは「$a_1 \ge a_2 \ge \cdots \ge a_6$」のいずれかが成り立つ.

素直な整数の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

自作問題No.1

Tehom 自動ジャッジ 難易度:
6月前

7

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

G1

orangekid 自動ジャッジ 難易度:
6月前

10

問題文

三角形$ABC$は$|AB|=84$、$|BC|=|CA|=72$を満たす二等辺三角形です。この三角形の垂心を$H$、頂点$A, B, C$から延びる垂線の足をそれぞれ$D,E,F$と置きます。さらに、直線$CF$上に$|DF|=|DG|$を満たす$F$でない点$G$をとります。この時、四角形$DFEG$の面積は互いに素な正整数$p,r$と平方因子を持たない数$q$を用いて$\dfrac{p\sqrt{q}}{r}$と表されるので、$p+q+r$を解答してください。ただし、$|AB|$で$AB$間の距離を表すものとします。

解答形式

半角数字で解答してください。


問題文

三角形 $ABC$ があり,以下が成り立っています:

$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$

いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
7月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
9月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

B

Furina 自動ジャッジ 難易度:
29日前

11

問題文

一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で入力してください。

KMTで使ったやつ②

nmoon 自動ジャッジ 難易度:
8月前

11

問題文

三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:

$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$

このとき,辺 $BC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
11月前

5

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.