F

Furina 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月9日21:00 正解数: 7 / 解答数: 11 (正答率: 63.6%) ギブアップ数: 2
この問題はコンテスト「N村杯Shortlist 001」の問題です。

全 11 件

回答日時 問題 解答者 結果
2024年6月10日20:28 F choco+
正解
2024年6月10日17:26 F ゲスト
正解
2024年6月10日6:36 F 326_math
正解
2024年6月10日4:46 F arararororo
不正解
2024年6月10日1:34 F nmoon
正解
2024年6月10日0:54 F natsuneko
正解
2024年6月10日0:47 F natsuneko
不正解
2024年6月9日23:12 F iwasaki
正解
2024年6月9日22:53 F shoko_math
不正解
2024年6月9日22:50 F shoko_math
不正解
2024年6月9日21:47 F bzuL
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

E

Furina 自動ジャッジ 難易度:
5月前

6

問題文

円 $\Omega$ があり,その周上に点 $P, Q$ があります.いま,$\Omega$ の弧 $PQ$ 上に $2$ 点 $A, B$ を,$P, A, B, Q$ がこの順にあるように取り,線分 $PQ$ 上に点 $C$ を取ると,三角形 $ABC$ の外接円は辺 $PQ$ に接しました.いま,$CQ$ の中点を $M$ とすると,$BM, AQ$ は三角形 $ABC$ の外接円上で交わったのでこの点を $R$ とします.いま,三角形 $ABC$ の外接円と三角形 $PQR$ の外接円の $R$ でない交点を $S$ とするとき,
$$AS=4, AP=2\sqrt{21}, BC=7$$
が成立しました.このとき,$BQ$ の長さは正整数 $a, b, c$ を用いて $\dfrac{\sqrt a-\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

7月前

6

問題文

下図で、AB=AF=BC=CD=EB、$∠$EAB=80°、$∠$ABC=40°です。
$∠$FDEの大きさは何度ですか。

解答形式

半角数字で入力してください。
例)10

RKC009

Furina 自動ジャッジ 難易度:
8月前

10

問題文

正三角形 $ABC$ において,その外接円の劣弧 $BC$ 上(端点を除く)に点 $D$ をとり,三角形 $ABD,BCD,CAD$ の内心をそれぞれ $I_C,I_A,I_B$ とすると,$I_BI_C=2I_AI_B=6$ が成立しました.このとき,$BC$ の長さの $2$ 乗を求めてください.

解答形式

答えは正整数値になるので,半角で解答してください.

D

Furina 自動ジャッジ 難易度:
5月前

27

問題文

半径が $4$ の円 $\Omega$ 上に2点 $A, B$ を直径をなさないようにとり,$A, B$ における $\Omega$ の接線の交点を $C$ とします.三角形 $ABC$ の垂心を $H$ とし,3点 $A, C, H$ を通る円と $\Omega$ の交点を $D$ とすれば,$AB=CD$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.

追記:$D\neq A$ とします.

解答形式

半角数字で解答してください.

bMC_F

bzuL 自動ジャッジ 難易度:
4月前

15

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
6月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
8月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

D

natsuneko 自動ジャッジ 難易度:
9月前

10

問題文

こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。

正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.

解答形式

答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.

幾何問題11/22

326_math 自動ジャッジ 難易度:
12月前

5

問題文

円 $\omega$ 上に相異なる $2$ 点 $A,B$ がある.ただし,弦 $AB$ は $\omega$ の直径ではない.$A,B$ における $\omega$ の接線をそれぞれ $l,m$ とする.劣弧 $AB$ 上(端点を除く)に点 $P$ をとり,$P$ を通り $l$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $C$ とし,$P$ を通り $m$ に平行な直線と $\omega$ の交点であって,$P$ でないものを $D$ とする.$l$ と直線 $BC$ の交点を $E$,$m$ と線分 $AD$ の交点を $F$ とする.また,線分 $AF$ と線分 $BE$ の交点を $X$,線分 $CF$ と線分 $DE$ の交点を $Y$ とする.$AB=\sqrt{69}$,$AC=3$,$BD=6$ がそれぞれ成り立っているとき,線分 $XY$ の長さは,互いに素な正整数 $a,c$ および平方因子を持たない $2$ 以上の整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を求めよ.

解答形式

半角数字で解答してください.

三角形の面積の和

Fuji495616 自動ジャッジ 難易度:
7月前

4

問題文

$∠$A=69°、$∠ $B=66°、$∠ $C=45°である三角形ABCがあります。辺AC上にAB=DBとなる点Dをとり、辺BC上にAB=AEとなる点Eをとりました。DBとEAの交点をFとします。三角形AFBの周りの長さが12cmの時、三角形ABCの面積の2倍と三角形ABFの面積の和は何cm$^2$ですか。

解答形式

半角数字で入力してください。
例)10

自作問題5

iwashi 自動ジャッジ 難易度:
3月前

3

問題文

実数$x$は以下の条件をすべて満たす。

  • $x$は有理数であり整数でない。
  • $x$は$10$より大きい。
  • $x$を既約分数で表したとき、分母は$20$であり分子は$17$の倍数である。
  • $x-10$の小数点第一位を四捨五入した値と$\sqrt{x}$の小数点第一位を四捨五入した値は等しい。

このような$x$全てについて、$20x$の総和を求めよ。

C

Furina 自動ジャッジ 難易度:
16日前

3

問題文

円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ,
$$AB=10,SC=16,TD=5,BC\cdot AD=32$$
が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください。