計算

kokoyu 採点者ジャッジ 難易度: 数学 > 中学数学
2024年6月19日23:33 正解数: 0 / 解答数: 3 ギブアップ不可

問題文

連続する5つの整数の和は必ず5の倍数になる。この理由を、nを使った式で説明しなさい

解答形式

数字は半角とする


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

2025問題

Yuu_0909 自動ジャッジ 難易度:
2月前

16

問題文

$2025^{2025}$の正の約数のうち、7で割ると1余るものの個数を求めよ。

解答形式

答えは整数なので、半角数字で答えてください。

連理湯方程式の利用2

kokoyu 自動ジャッジ 難易度:
5月前

12

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする

複素数の2乗

amberGames-777 自動ジャッジ 難易度:
8月前

6

問題文

(1+i)^2を計算してください。

解答形式

半角で入力してください。

根号による計算(3)

y 自動ジャッジ 難易度:
8月前

1

$$
\sqrt{\sqrt{\sqrt{\sqrt{{{{{{{{{{log_xx}^{log_{2}{8}}}^{log_{3}{81}}}^{log_{4}{16}}}^{log_{5}{25}}}^{log_{6}{36}}}^{log_{7}{49}}}^{log_{8}{64}}}^{log_{9}{81}}}^{log_{10}{100}}}}}}
$$
$$
この解は、どれか。
$$
$$
(1)89(2)90(3)91(4)92
$$

絶対値(19)

y 自動ジャッジ 難易度:
6月前

6

$$
|2^{n-1}+1|
$$
$$
nが、整数のとき、上の式は、必ず(α)である。
$$
$$
(1)負(2)正
$$

そらさんの新体力テスト

sola 自動ジャッジ 難易度:
8月前

7

問題文

そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。

そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。

あかつきさんは毎秒Xm東に進みます。

そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。

Xはいくつですか?

解答形式

Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。

根号と指数

y 自動ジャッジ 難易度:
5月前

6

$$
\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{n^{-64}}}}}}}
$$

指数・対数

y 自動ジャッジ 難易度:
23日前

3

$$
log_2(\frac{1}{1024})^n>6i^6
$$

絶対値(4)

y 自動ジャッジ 難易度:
8月前

4

$$
|tan2250°・cos1800°・sin1200°|\\を求めて下さい。
$$
$$
(1)\frac{1}{2}(2)\frac{\sqrt{3}}{2}(3)1(4)2
$$

絶対値(15)

y 自動ジャッジ 難易度:
8月前

3

$$
|\sqrt{m}^{2}|=log_216\\の解は、どれか(m>0)。
$$
$$
(1)4(2)3(3)2(4)1
$$

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
23日前

5

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

確率

Ultimate 自動ジャッジ 難易度:
7月前

10

問題文

5進数で表された[2024]を2進数で表せ。

解答形式

数字のみでOK