復刻

Weskdohn 採点者ジャッジ 難易度: 数学 > 競技数学
2025年10月13日15:05 正解数: 3 / 解答数: 4 (正答率: 100%) ギブアップ不可

全 4 件

回答日時 問題 解答者 結果
2025年10月14日11:21 復刻 smasher
未採点
2024年7月6日19:37 復刻 shukurimu_Az
正解
2024年7月6日19:37 復刻 shukurimu_Az
正解
2024年7月6日19:27 復刻 uran
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

Robbins Constant

udonoisi 自動ジャッジ 難易度:
12日前

1

問題文

単位立方体の内部からランダムに点を $2$ つ選んだときの平均距離を答えてください.

解答形式

答えは最大公約数が $1$ である正の整数 $a,b,c,d,e$ と互いに素な正の整数 $f,g$ と平方因子を持たない正の整数 $h,i,j,k$ と正の整数 $l,m,n$ を用いて
$$\frac{a+b\sqrt{h}-c\sqrt{i}-d\pi}{e}+\frac{\ln(l+\sqrt j)}{m}+\frac{f\ln(n+\sqrt k)}{g}$$
と表されるので, $a+b+c+d+e+f+g+h+i+j+k+l+m+n$ を解答してください.
ただし, $\ln x$ は $x$ の自然対数を表します.

注意

解説は用意していません

因数分解

kikutaku 自動ジャッジ 難易度:
4月前

2

問題文

与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030

回答の仕方

因数分解された式のみ回答

整数

sulippa 採点者ジャッジ 難易度:
4月前

2

問題文

$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式
$x^n - (x-p)^n = p^n$
を考える。
$p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。

解答形式

何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません

組み合わせ

suth 自動ジャッジ 難易度:
4月前

8

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

幾何

katsuo_temple 自動ジャッジ 難易度:
7月前

5

問題文

重心を$G$とする三角形$ABC$において,その外接円を$Γ$とし,$A$を通って$BC$に垂直な直線と$Γ$が再び交わる点を$D$とする.また$B,C$から対辺に下ろした垂線の足をそれぞれ$E,F$とし,三角形$DEF$の外接円と$Γ$の交点のうち,$D$でないほうを$P$とする.$AB,AC$の中点をそれぞれ$M,N$としたとき,$3$直線$MN,EF,AG$は$1$点で交わり,$$AB=3 AP=4$$が成立した.このとき$BC^2$は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$の値を解答して下さい.

解答形式

半角で解答して下さい.

整数問題

kikutaku 採点者ジャッジ 難易度:
4月前

4

問題文

自然数nを用いた素数2^n+5^(n+1)は存在するか。

解答形式

証明する形式。

自作場合の数・確率1-3

oolong_tea 自動ジャッジ 難易度:
10月前

4

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。

(4)は,自作場合の数・確率1-4につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。

勇者の行く手を阻むもの

kusu394 自動ジャッジ 難易度:
16月前

4

問題文

勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.

しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.

勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

問題3

sulippa 自動ジャッジ 難易度:
3月前

7

問題文

$p=3, \quad q=5, \quad r=7$

$X = p^q + q^p$
$Y = q^r + r^q$
$Z = r^p + p^r$

$N = X^p + Y^q + Z^r$

このとき、$N$を$105$で割った余りを求めよ。

解答形式

半角左詰め

問題2

sulippa 自動ジャッジ 難易度:
3月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め

関数方程式 解説修正版

Sry 自動ジャッジ 難易度:
36日前

8

$$問 題$$
$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$
$この関数が任意の実数x,yに対して恒等式$
$$f(x ^2+y)=f(kx ^2+2y)−f(3x ^2)$$
$を満たすとき、定数kの値を求めよ。$

Combination

Weskdohn 自動ジャッジ 難易度:
14月前

9

問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません.