全 30 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である. $n$ および $N$ の値を求めよ.
一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.
$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.
文字列$pqr$を,半角数字で解答してください.解が複数ある場合は, (1) $p$の値が小さい順 (2) $p$の値が等しい組は,$q$の値が小さい順 (3) $p,q$の値がともに等しい組は,$r$の値が小さい順 に,1行に1つずつ書いてください.
どなたか素数に限らない整数解を全て求めてくださるとありがたいです.
下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。
半角数字で入力してください。 例)10
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー 誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。
AB=ACなる二等辺三角形ABCにおいて、点Aから下ろした垂線の足をD、三角形ABCの外心.垂心をそれぞれO.Hとする。 AH:HD=119:25、OH=138、BC=480のとき、 ABの長さを求めよ。
半角で回答して下さい。
AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった. このときBCの長さの2乗を求めよ。
例)半角で解答して下さい。
素数 $p,q$ が $$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。
半角数字で解答してください。
${999}$を2以上の最小の$2$つの立方数の差で表せ。
a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。 (例:15^3-3^3なら解答は153)
正四面体ABCDを考える。正四面体の全ての面に接する内接球の中心を点O、∠AOB=θと定める。
θと108°のうちどちらの方が大きいか。
θの方が大きい場合はA、108°の方が大きい場合はB、θ=108°の場合はCと半角入力してください。
内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。
$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.
追記: 回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します. この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように 並び替えただけの組は同一のものとみなします.