素数

katsuo.tenple 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月23日20:02 正解数: 12 / 解答数: 30 (正答率: 40%) ギブアップ不可

全 30 件

回答日時 問題 解答者 結果
2024年10月28日3:01 素数 natsuneko
正解
2024年9月24日22:49 素数 nmoon
正解
2024年9月24日22:47 素数 nmoon
不正解
2024年9月4日16:35 素数 katsuo_temple
正解
2024年9月3日18:07 素数 ゲスト
不正解
2024年9月3日18:00 素数 ゲスト
不正解
2024年9月3日16:55 素数 ゲスト
不正解
2024年9月2日11:56 素数 punie
正解
2024年9月2日5:59 素数 ゲスト
正解
2024年9月2日5:54 素数 ゲスト
不正解
2024年9月2日5:46 素数 ゲスト
不正解
2024年9月2日3:46 素数 ゲスト
不正解
2024年9月2日3:46 素数 ゲスト
不正解
2024年9月2日3:45 素数 ゲスト
不正解
2024年9月2日3:10 素数 ゲスト
不正解
2024年9月1日20:09 素数 Furina
正解
2024年8月28日16:10 素数 yuuu
正解
2024年8月28日16:08 素数 yuuu
不正解
2024年8月25日21:11 素数 orangekid
正解
2024年8月25日19:19 素数 ゲスト
正解
2024年8月25日11:12 素数 YoneSauce
正解
2024年8月25日11:10 素数 YoneSauce
不正解
2024年8月25日4:44 素数 ゲスト
不正解
2024年8月25日4:42 素数 ゲスト
不正解
2024年8月25日4:39 素数 ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題7/19

326_math 自動ジャッジ 難易度:
16月前

7

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

整数問題2/7

326_math 自動ジャッジ 難易度:
21月前

11

問題文

$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.

解答形式

文字列$pqr$を,半角数字で解答してください.解が複数ある場合は,
(1) $p$の値が小さい順
(2) $p$の値が等しい組は,$q$の値が小さい順
(3) $p,q$の値がともに等しい組は,$r$の値が小さい順
に,1行に1つずつ書いてください.

追記

どなたか素数に限らない整数解を全て求めてくださるとありがたいです.

正六角形の頂点と中点を結ぶ

Fuji495616 自動ジャッジ 難易度:
9月前

17

問題文

下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10

ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。

初等幾何

katsuo.tenple 自動ジャッジ 難易度:
2月前

6

問題文

AB=ACなる二等辺三角形ABCにおいて、点Aから下ろした垂線の足をD、三角形ABCの外心.垂心をそれぞれO.Hとする。
AH:HD=119:25、OH=138、BC=480のとき、
ABの長さを求めよ。

解答形式

半角で回答して下さい。

200G

MrKOTAKE 自動ジャッジ 難易度:
3月前

11

問題文

AB=5, AC=7の△ABCがあり重心をG,内心をIとするとBC//GIであった. このとき△ABCの面積の2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

読み間違いによる問題

katsuo.tenple 自動ジャッジ 難易度:
2月前

15

問題文

AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。

解答形式

例)半角で解答して下さい。

2人で肩にpを乗せて

kusu394 自動ジャッジ 難易度:
6月前

12

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

簡単な幾何

Lamenta 自動ジャッジ 難易度:
4月前

14

問題文

$∠BAC=30°$、$BC =3$である$△ABC $について、$AB$の最大値を解答してください。

解答形式

半角数字で解答してください。

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
8月前

20

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)


問題文

正四面体ABCDを考える。正四面体の全ての面に接する内接球の中心を点O、∠AOB=θと定める。

θと108°のうちどちらの方が大きいか。

解答形式

θの方が大きい場合はA、108°の方が大きい場合はB、θ=108°の場合はCと半角入力してください。

求長問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。

解答形式

半角数字で解答してください。

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
6月前

11

問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.