面積の最大値

skimer 採点者ジャッジ 難易度: 数学 > 高校数学
2024年9月6日11:03 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ不可

問題文

半径1の円上に3点A,B,Cを取る
三角形ABCの面積の最大値を答えよ

解答形式

答えのみ


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数

kiriK 自動ジャッジ 難易度:
14月前

17

$
f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。
$
$
f(a,b) と f(c,d) の最大公約数として
考えられるものの最小値を求めよ。
$
$
ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。
$

連理湯方程式の利用2

kokoyu 自動ジャッジ 難易度:
18月前

17

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする

文化祭算数問題 6

sta_kun 自動ジャッジ 難易度:
15月前

7

問題文

角 $BAC=$ 角 $BCD=60°$ なる $AD\parallel BC$ の台形 $ABCD$ について,以下が成立しました.
$$ AC-AB=7 \mathrm{cm},\quad BC-CD=3 \mathrm{cm}$$
このとき $BC$ の長さは何 $\mathrm{cm}$ ですか?ただし,求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 5

sta_kun 自動ジャッジ 難易度:
15月前

6

問題文

正方形 $ABCD$ の辺 $CD$ 上に点 $E$ をとり,直線 $AE$ と $BC$ の交点を $F$,$AE$ と $BD$ の交点を $G$ とすると,$AG:EF=1:2$ が成立しました.このとき,角 $AFB$ は何度ですか?ただし,解答すべき値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 4

sta_kun 自動ジャッジ 難易度:
15月前

8

問題文

角 $A=90°$ ,角 $B=90°$ ,角 $C=120°$ なる四角形 $ABCD$ があります.辺 $AB$ 上に点 $E$,辺 $BC$ 上に点 $F$ をとると,$BF=9,FC=2,CD=8$ ,角 $EFD=120°$ が成り立ちました.$AE:EB$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表されるので $a+b$ の値を解答してください.

解答形式

半角数字で解答して下さい.

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
15月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

文化祭算数問題 1

sta_kun 自動ジャッジ 難易度:
15月前

10

問題文

角 $C$ が直角となるような三角形 $ABC$ の辺 $BC$ 上に点 $D$ をとると,角 $DAC:$ 角 $BAD=1:2$,$AD$ の長さは $3 \mathrm{cm}$,$AB$ の長さは $5 \mathrm{cm}$ となりました.このとき,$BD:DC$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表せるので $a+b$ の値を解答して下さい.

解答形式

半角数字で解答してください.

素数と整数

skimer 採点者ジャッジ 難易度:
7月前

7

問題文

$n\;を自然数とする$
$n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください

Lucas

shippe 自動ジャッジ 難易度:
3月前

16

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

C. 地雷

G414xy 自動ジャッジ 難易度:
15月前

14

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

変遷(ごめんなさい)

udonoisi 自動ジャッジ 難易度:
3月前

13

問題文

$\alpha^5-1=0$ を満たす複素数 $\alpha$ に対して関数 $f$ を $f(x)=\alpha x+1$ で定義したとき,
$f^{100}(1)$ としてありうる値の総和をすべて求めてください. ただし,$f^{100}(x)$ は $f$ を $100$ 回合成した関数とします.

解答形式

例)非負整数を答えてください.

追記

ごめんなさい解答形式を書いてなかったです

対数と整数

RentoOre 自動ジャッジ 難易度:
21月前

9

問題文

$p$ を素数,$n$ を自然数とする。$\log_{p}(n!)$ が有理数となるとき,その値を求めよ。

解答形式

$\log_{p}(n!)$ の値をすべて求めてください。解答は小さい順に1行目から答えてください。