以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(4)$ できた2次方程式が異なる2つの実数解をもつとき,その2解が共に負である条件付き確率を求めよ。
$$
(求める条件付き確率)=\frac{A(Bn+C)(Dn+E)(Fn+G)}{Hn(In+J)(Kn+L)}
$$
$A$~$L$に当てはまる整数を半角数字,空白区切りで解答
わざとわかりづらくしてるので,1が入るところとかあります。
この問題は(4)です。(3)までを解かなくてもできますが,少し大変かもしれません。
この問題を解いた人はこんな問題も解いています