素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。) 最大のキウイナンバーを求めてください。
答えの数字をそのまま入力すればOKです。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
5進数で表された[2024]を2進数で表せ。
数字のみでOK
4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?
半角数字で入力してください。
OMCB030-C(https://onlinemathcontest.com/contests/omcb030/tasks/4587) のもう一つの案です.
$2$ 以上の整数 $n$ に対し,$n$ が持つ相異なる素因数の総積を $\mathrm{rad}(n)$ で表します.例えば,$\mathrm{rad}(18)=2×3$ です.次の等式を満たす $2$ 以上の整数 $m$ の総和を求めてください.
$$m=\mathrm{rad}(m)+240$$
√5の小数部分をaとするとき、a-√5の値を求めよ。
数字や符号は半角で解答してください
$\log_227$の整数部分を答えよ
4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?
${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!
${}$ 解答は求める和をそのまま入力してください。 (例)103 → $\color{blue}{103}$
$a$を定数とする。 このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。
a=𓏸𓏸というふうに解答してください。 また、全て半角で解答してください。 答えのみ入力してください。
連続する8つの正整数の三乗の和で表せる数のうち、2000に最も近いものを求めよ。
半角で入力してください。
次の式を計算しなさい。
$$ \frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2} $$
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。
$n$の値を半角で入力してください。