縦19区画、横28区画のグリッドがある 右折(↑→)と左折(→↑)両方の数の和が10である時 最短経路は何通りあるか?
非負整数で答えろ
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ. $(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.
$(1),(2)$ の和を半角数字で入力してください.
$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか. $(2)$ $3$ 桁の素数は $200$ 個未満か.
命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.
非負整数r,sを用いて $$334r+2025s=m$$の形に表せない正の整数mの個数を求めろ
以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.
また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.
階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.
答えを入力してください.
$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします. $$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$ このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.
半角数字で解答してください.
$a\lt c$ なる実数 $a, b, c$ が $$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$ をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.
$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて, $$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$ の総和を $f(n)$ とします. $f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.
$10$ 進数での桁和が $2500$ となる正整数であって, $2024$ の倍数となるものうち,最小のものを $M$ とします.$M$ を $10$ 進表記したときの $10^{k-1}$ の位の値を $M_k$ としたとき,$1\leq M_k \leq 8$ を満たす $k$ の総積を $10000000$ で割った余りを答えてください. ただし,以下の $10^n$ を $2024$ で割った余りに関する表を用いて構いません.
$$ \begin{array}{c:ccccccccc} n & 3 &4 & 5 & 6 & 7 & 8 & 9 \\ \hline 10^n\pmod{2024} &1000 & 1904 &824& 144 & 1440& 232& 296 \end{array}\\\\ \begin{array}{ccccccccc} 10 & 11& 12 & 13 &14 & 15 & 16 & 17 & 18\\ \hline 936& 1264 & 496 &912 & 1024 &120 &1200 & 1880 & 584 \end{array}\\\\ \begin{array}{ccccccccc} 19 & 20 & 21 & 22 & 23 & 24 &25\\ \hline 1792 & 1728 & 1088 & 760 & 1528 & 1112 & 1000 \end{array} $$
半角数字で解答してください. たとえば $M=9876543210$ であれば,$M_1=0,M_2=1,\ldots,M_{10}=9$ となるため,$1\leq M_k \leq 8$ を満たす $k$ の総積は $2 \times \cdots \times 9= 362880$ となります.
${}$ 西暦2024年問題第4弾です。今回は連分数を素材にしてみました。一風変わった解き心地の問題をお楽しみください。
${}$ 解答は有理数$a$と$b$の値を2行に分けて入力してください。値が整数のときにはそのまま整数表現で、非整数のときには既約分数○/△の形で入力することにします。「$a=$」「《1行目》」などの入力は必要ありません。 (例)$a=2024$、$b=\dfrac{1}{4}$ → 《1行目》$\color{blue}{2024}$、《2行目》$\color{blue}{1/4}$
$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.
半角数字で解答してください。
正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.
【補助線主体の図形問題 #102】 今週の図形問題です。ある素朴な性質を元に作問しました。手慣れた方は暗算で行けるかもしれません。それぞれお好きなようにお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。