中心を $O_1,O_2$ とする $2$ 円 $\omega_1,\omega_2$ が $2$ 点 $A,B$ で交わっています.半直線 $O_1A$ と $\omega_2$ が点 $A$ 以外の点で交わったのでその交点を $C$ とし,半直線 $O_2A$ と $\omega_1$ が点 $A$ 以外の点で交わったのでその交点を $D$ とすると,以下が成立しました.$$O_1A=3,O_2A=AB=2$$このとき,$CD$ の長さは最大公約数が $1$ である正整数 $a,c,e$ と平方因子を持たない正整数
$b,d$ を用いて $\displaystyle\frac{a\sqrt{b}+c\sqrt{d}}{e}$ と表せるので,$abcde$ を解答してください.
例)半角数字で入力してください。
この問題を解いた人はこんな問題も解いています