1組の合同な三角形を見つける。 ※ちなみに、2つの正七角形がまっすぐ配置されている必要はない。
この問題を解いた人はこんな問題も解いています
正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。 ただし、図中の青点はそれぞれの正方形の対角線の交点です。
半角数字で解答してください。
三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。 $$ \frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B} $$
最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。 ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。
半径と中心角が等しい扇形に正方形が内接しています。青い正方形と赤い正方形の面積の大小関係を調べてください。 ただし、同じ印をつけた部分の長さは等しいです。
(青の面積) > (赤の面積) なら 1 (青の面積) = (赤の面積) なら 2 (青の面積) < (赤の面積) なら 3 を、半角数字で解答してください。
正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。 ただし、図中"center"で示した点は正六角形の外心です。
0~360までの半角数字で、「°」や「度」をつけずに解答してください。
周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。
緑色の五角形の面積を求めてください。 紫でしめした3つの角は等しく、赤同士、青同士の線分はそれぞれ等しい長さです。
図中の赤い線分の長さが10のとき、青で示した四角形の面積を求めてください。
2つの正六角形が図のように配置されています。 赤い線分の長さが10のとき、青い線分の長さを求めてください。 ただし、図中"center"で示した点は各正六角形の外心です。
図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。
半円2つが図のように配置されています。 赤い線分と青い線分は長さの比が1:2です。 このとき、Xの角度を求めてください。
半角数字で入力してください。 「度」や「°」は付けないでください。 例:X=57° → 57
△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。
長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。