第4問

sulippa 採点者ジャッジ 難易度: 数学
2025年6月6日21:00 正解数: 1 / 解答数: 3 (正答率: 33.3%) ギブアップ不可
この問題はコンテスト「三角形の内接円」の問題です。

問題文

整数辺の直角三角形の中で、ある特別な性質を持つものを「閉じた三角形」と呼ぶ。
その定義は次の通りである:
三角形の3つの頂点から、最も近い内接円の接点までの3つの線分を考える。その3つの線分の長さを3辺として、新たな非退化三角形を作ることができる。
この条件を満たすもののうち、斜辺が300未満であるもの全てを考え、それらの周長の総和を求めよ。

解答形式

例)ひらがなで入力してください。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

重心内心の距離

sulippa 自動ジャッジ 難易度:
14日前

5

問題

三角形の重心を G、内心を I、内接円の半径を $r$ 、外接円の半径を$R$とする。もし $GI=r$ が成り立つとき、この条件を満たす非退化な三角形が存在するための、$R/r$ の最小値を求めよ。

解答形式

1行目に分子
2行目に分母を書いてください
半角で、根号が含まれる場合
√(17) √(41+5√(19)) 2√(15)+3√(17)
このように括弧を付けてください
また、指数が小さい順、同じ次数のものは小さい数のものから並べてください
例:√10+√15+1 ³√15+√17+9

第2問

sulippa 採点者ジャッジ 難易度:
1日前

1

問題文

整数辺を持つ直角三角形のうち、その斜辺を a、内接円の半径を r としたとき、等式
$a^2 - 4ar - 4r^2 = r$
を満たすものを考える。
そのような三角形すべてのうち、内接円の半径 r が 1000 未満であるもの全ての、面積の総和を求めよ。

解答形式

半角スペースなし

第1問

sulippa 採点者ジャッジ 難易度:
1日前

2

問題文

3辺の長さがすべて整数である直角三角形を考える。その斜辺を$a$、直角を挟む2辺を$b, c$とする。

これらの辺の長さが、以下の関係式を満たしているという。
$$7a = 5(b+c)$$
この条件を満たす全ての直角三角形のうち、斜辺 $a$ が$10$の倍数であり、かつ $a < 200$ であるもの全てを考える。

それらの三角形の、面積の総和を求めよ。

解答形式

半角でスペースなし

D

Furina 自動ジャッジ 難易度:
7月前

3

問題文

$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さを求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.

解答形式

半角数字で入力してください。

C

Furina 自動ジャッジ 難易度:
7月前

3

問題文

円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ,
$$AB=10,SC=16,TD=5,BC\cdot AD=32$$
が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で入力してください。

E. 更に分割

G414xy 自動ジャッジ 難易度:
8月前

8

問題文

4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。?
但し、同型でも場所が異なるなら違う種類と見なします。

解答形式

半角数字で入力してください。

bMC_H

bzuL 自動ジャッジ 難易度:
10月前

16

問題文

正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して,
$$
f(x)f(yf(x))=2024f(x+2024y)
$$
を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.

解答形式

半角数字で解答してください.

ダーツ

J_Koizumi_144 自動ジャッジ 難易度:
17月前

9

問題文

$p$を$0$以上$1$以下の実数とします.$A$と$B$の二人は,円形の的を用いて次のようなダーツ遊びをします.

  • $A,B,A,B,\dots$の順に,的に向かって交互に矢を投げる.
  • $A$は直前に$B$が投げた矢よりも中心に近い位置に矢が刺されば成功となる.ただし$1$回目は必ず成功とみなす.
  • $B$は直前に$A$が投げた矢よりも中心から遠い位置に矢が刺されば成功となる.
  • $n$回目に矢を投げたプレイヤーは,成功すると$p^n$点を得る.成功しなかった場合,その時点でゲームを終了する.

矢の刺さる位置が的の中で一様ランダムに決まると仮定するとき,ゲームが終了するまでに$A$が得られる得点の期待値を$f(p)$とし,$B$が得られる得点の期待値を$g(p)$とします.$f(p)=\dfrac{20}{21}$であるとき,$g(p)$の値は互いに素な正整数$a,b$を用いて$\dfrac{b}{a}$と表せるので,$a+b$を解答してください.

解答形式

半角数字で入力してください.

D. ループ

G414xy 自動ジャッジ 難易度:
8月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

WMC(H)

Weskdohn 自動ジャッジ 難易度:
42日前

6

問題文

接点・共通領域を持たない円A,Bがあり,これらの中心を通る直線lとの交点をP,Q,R,Sとします.(P≠Q≠R≠S)
 但しP,QがAの円周上,R,SがBの円周上にあり,P,Q,R,Sの順に並ぶとします.

またPS,QRの長さをそれぞれa,bと置きます.

この時A,Bの共通内接線の長さが2025となるような(a,b)の組として考えられるものは何通りありますか.

解答形式

答えだけ(答えが1通りなら"1"だけ)を半角数字で解答して下さい.

問題

Furina 自動ジャッジ 難易度:
2月前

8

問題文

$AB\lt AC$ なる三角形 $ABC$ において,外心を $O$,内心を $I$ とします.また,三角形 $ABC$ の内接円と辺 $BC$ の接点を $D$ とします.さらに,$I$ を通り直線 $BC$ に平行な直線と直線 $AD$ との交点を $P$ とすると,以下が成立しました.
・直線 $AD$ と直線 $IO$ は直交する.
・$AP=15,DP=8$
$AI$ の長さの $2$ 乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せます.
 ところで,$\cal{AB}=a,\cal{AC}=(b\ \mathrm{mod}\ a)$ なる三角形 $\cal{ABC}$ の内心を $\cal{I}$,内接円 $\omega$ と辺 $\cal CA,AB$ との接点をそれぞれ $\cal E,F$ とします.三角形 $\cal ABE$ の外接円と三角形 $\cal ACF$ の外接円が $\omega$ 上で交わっているとき,辺 $\cal BC$ の長さを求めてください.ただし,求める長さは,正整数 $c,d$ を用いて $c-\sqrt{d}$ と表せます.ただし,$(b\ \mathrm{mod}\ a)$ で $b$ を $a$ で割った余りを表します.
 ところで,$n=d-2c-4$ とします.Furinaくんは,以下のような問題Xを作りましたが,数値設定に悩んでいます.
問題X:$XY=n,YZ=p,ZX=q$ なる三角形 $XYZ$ の内心を $ぴ$,$\angle X$ 内の傍心を $か$ とします.$ぴか$ の長さを求めてください.
 Furinaくんは,解答形式を奇麗にしたいため,$ぴか^2$ が正整数になるようにしたく,さらに $ぴか^2$ が $p$ で割り切れないようにしたいといいます.このようなことが可能な奇素数の組 $(p,q)$ すべてについて,$p+q$ の総積を求めてください.

追記 $\angle A$ 内の傍心とありましたが,これは $\angle X$ 内の傍心のことです.現在は訂正されています.

解答形式

半角整数値で解答してください.

C

nmoon 自動ジャッジ 難易度:
7月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.