[C] Unknown Formulae

masorata 自動ジャッジ 難易度: 数学 > 大学数学
2020年11月6日18:00 正解数: 7 / 解答数: 13 (正答率: 53.8%) ギブアップ不可
KOH-MC 関数方程式 微分方程式
この問題はコンテスト「KOH Mathematical Contest #4」の問題です。

全 13 件

回答日時 問題 解答者 結果
2025年5月17日19:34 [C] Unknown Formulae Weskdohn
正解
2025年4月29日15:07 [C] Unknown Formulae Germanium32
不正解 (1/2)
2025年4月29日15:07 [C] Unknown Formulae Germanium32
不正解
2024年11月18日11:38 [C] Unknown Formulae katsuo_temple
正解
2024年8月27日1:24 [C] Unknown Formulae Yuu_0909
不正解
2024年8月27日1:24 [C] Unknown Formulae Yuu_0909
不正解 (0/2)
2024年2月28日13:25 [C] Unknown Formulae Prime-Quest
正解
2023年11月14日18:34 [C] Unknown Formulae naoperc
正解
2020年11月8日4:54 [C] Unknown Formulae tanimoto
正解
2020年11月6日19:47 [C] Unknown Formulae nesya
正解
2020年11月6日19:30 [C] Unknown Formulae okachan6666
正解
2020年11月6日18:27 [C] Unknown Formulae nesya
不正解 (1/2)
2020年11月6日18:22 [C] Unknown Formulae nesya
不正解 (1/2)

おすすめ問題

この問題を解いた人はこんな問題も解いています

[E] Triangles 2

halphy 自動ジャッジ 難易度:
4年前

6

問題文

$n$ を正の整数とするとき,以下の条件を満たす三角形の総数 $T_n$ を求めなさい。ただし,互いに合同であるような $2$ つの三角形は区別しない。

  • 条件:三角形の辺の長さはすべて $n$ 以下の整数である。

例えば,$n=1$ のときには,辺の長さが $1$ の正三角形を作ることができる。これ以外に条件を満たすような三角形は存在しない。よって $T_1=1$ である。

$n$ が奇数のとき

$$
T_n=\frac{\fbox{ア}}{\fbox{イウ}}n^3+\frac{\fbox{エ}}{\fbox{オ}}n^2+\frac{\fbox{カ}}{\fbox{キク}}n+\frac{\fbox{ケ}}{\fbox{コ}}
$$

である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。分数は既約分数の形で答えてください。

求値問題7

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

(2021.3.13 15:56 追記) 解答に誤りがあったため修正しました。

次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。

解答形式

半角数字で解答してください。

求角問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図の直角三角形について、青い部分の面積と緑色の部分の面積が等しいとき、$x$で示した角度を求めてください。

解答形式

度数法で求め、単位を付けずに0以上360未満の数字を半角で解答してください。


問題文

$a$ を実数の定数とする。正の実数値をとる関数 $y(x)$ は何回でも微分可能で、

$$
\begin{cases}
2yy''''+(y'')^2=2y'y'''+a & (x \in {\mathbb R})\\
y'(0)=y''(0)=0 \\
y'''(0)=y''''(0)=1
\end{cases}
$$

を満たすとする。$\displaystyle a=\frac{50}{17}$ のとき、($x$ が実数全体を動くときの)$y(x)$ の最小値は $\displaystyle \frac{\fbox{アイ}}{\fbox{ウエオ}}$ である。

解答形式

ア〜オには、0から9までの数字が入る。
文字列「アイウエオ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題18

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。

解答形式

半角数字で解答してください。

4年前

4

問題文

数列$~\{a_n\},~\{b_n\}$を相異なる2つの実数$~\alpha,\beta~$を用いて以下のように定義する。
$$
a_n = \cfrac{1}{\displaystyle{\sum_{k=0}^n}\alpha^{n-k}\beta^{k}}~~~,~~~b_n = \sum_{m=0}^\infty\frac{1}{a_mn^{m+2}}
$$ただし、$\{b_n\}~$は$n\geq 2$で定義されるものとする。$\alpha,\beta~$が
$$
\begin{cases}
\alpha + \beta = 1\\
|\alpha||\beta| = 1
\end{cases}
$$を満たすとき、
$$
a_k = b_k
$$となる最小の自然数$~k~$は$~k=\fbox{ア}\fbox{イ}$であり、このとき$~b_k = \cfrac{\fbox{ウ}}{\fbox{エ}\fbox{オ}}$である。

解答形式

ア〜オには0から9までの数字のいずれかが入る。
数字列「アイウエオ」をすべて半角で入力し解答せよ。
ただし、分数は既約分数の形にすること。

求長問題20

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。

※平行四辺形の一辺と半円は接する。

解答形式

$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求長問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

円の中の線分が図の条件を満たすとき、円の半径を求めてください。

解答形式

半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。
文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。