正の実数 $a,b,c,d$ が, $$ 2(a^2+b^2+c^2+d^2)=(a+b+c+d)^2+8\sqrt{abcd} $$ を満たす時,以下の値の最小値を求めて下さい.ただし求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください. $$ \dfrac{6a+8b+9c}{d} $$
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する