300G

Nyarutann 自動ジャッジ 難易度: 数学 > 競技数学
2025年7月29日22:46 正解数: 2 / 解答数: 3 (正答率: 66.7%) ギブアップ数: 1

問題文

三角形 $ABC$ において,$\angle{A}, \angle{B}, \angle{C}$ の角の二等分線と辺 $BC, CA, AB$ との交点を $D, E, F$ ,直線 $CF$ と $DE$ の交点を $X$ ,三角形 $ABC$ の外接円と直線 $AD, AX$ の交点を $M, N$ とすると,以下が成り立ちました.
$$
MN=NC, BD=4, DC=6
$$このとき,三角形 $ABC$ の面積を求めてください.ただし,答えは 正整数 $a, b, c$ ( $a$ と$b$ は互いに素,$c$ は平方因子を持たない)を用いて $\dfrac{b\sqrt{c}}{a}$ と表されるので $a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

素因数分解だよ

udonoisi 自動ジャッジ 難易度:
56日前

10

問題文

$56076923$ の素因数の総和を求めてください.
ただし, 重複する素因数は異なるものとして考えます.

解答形式

例)非負整数を答えてください.

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
6月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

KOTAKE杯007(P)

MrKOTAKE 自動ジャッジ 難易度:
2月前

19

問題文

$\angle A$ が鈍角の二等辺三角形 $ABC$ があり,外接円を $\Omega$ とします.$\Omega$ の点 $C$ を含まない弧 $AB$ 上に点 $P$ をとり,直線 $BP$ と点 $C$ における $\Omega$ の接線の交点を $Q$ とし,直線 $AP$ と線分 $CQ$ の交点を $R$ とすると以下が成立しました.
$$BC=40,\quad BP=14,\quad QR=9$$
このとき線分 $AP$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください

柏陽祭2025 (F)

ulam_rasen 自動ジャッジ 難易度:
17日前

12

$AB>AC$を満たす鋭角三角形$ABC$の外接円を$Ω$, 辺$BC$の中点を$M$とします. 点$B,C$から対辺に下した垂線の足をそれぞれ$E, F$とし, 直線$EF$と$Ω$の交点を$P, Q$とします. ただし, 四点$P, E, F, Q$はこの順に並ぶものとします. 円$MEF$と直線$MQ$の交点を$L(\neq M)$としたところ直線$AL$と直線$PM$が$Ω$上で交わりました.
$$
QL=PM=20
$$

が成立するとき, 線分$AP$の長さを二乗した値を求めてください.

1と4

udonoisi 自動ジャッジ 難易度:
2月前

18

問題文

非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください.
ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.

解答形式

例)整数を答えてください.

柏陽祭2025 (D)

ulam_rasen 自動ジャッジ 難易度:
17日前

20

問題文

$AB>AC$を満たす鋭角三角形$ABC$の外心を$O$, $\angle BAC$の二等分線と直線$BO$の交点を$D$とします.
円$ABC$について弧$BAC$の中点を$M$とし, 直線$AB$と直線$CM$の交点を$E$とすると以下が成り立ちました.
$$
\angle ADE=\angle AME, AE=25, BE=96
$$
このとき, 辺$AC$の長さは互いに素な正整数 $a,b$ を用いて$\Large\frac{a}{b}$と表せるので $a+b$ の値を解答してください.

素因数分解

sembri 自動ジャッジ 難易度:
44日前

17

63999271を素因数分解した時に出てくる素因数全ての和を求めなさい。

例:35の時
 5+7=12と解答。

KOTAKE杯001(T)

MrKOTAKE 自動ジャッジ 難易度:
14月前

40

問題文

三角形$ABC$の重心$G$に関して$A$と対称な点を$D$とすると$4$点$ABDC$は共円であり,
$AB=6,BD=4$であった.このとき$AD$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(T)

MrKOTAKE 自動ジャッジ 難易度:
2月前

16

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり,外接円 $\Omega$ の中心を $O$, $\Omega$ の $A$ を含まない方の弧 $BC$ の中点を $M$ とします.$\Omega$ の点 $B,C$ それぞれにおける接線の交点を $D$ とし,線分 $AD$ と $\Omega$ の交点のうち $A$でない方を $P$ とし,点 $P$ を通り直線 $BC$ に垂直な直線と線分 $AM$ の交点を $Q$ とすると以下が成立しました.
$$AQ=8,\quad OQ=3,\quad \angle PMO=\angle QOM$$
このとき線分 $BM$ の長さの $2$ 乗は互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(S)

MrKOTAKE 自動ジャッジ 難易度:
2月前

19

問題文

$AB<AC$ を満たす三角形 $ABC$ があり,外接円を $\Gamma$ ,$A$ 混線内接円を $\Omega$ とします.$\Gamma$ と $\Omega$ の接点を $P$ とし,$\Gamma$ の点 $A$ を含む方の弧 $BC$ の中点を $M$ とし,線分 $MP$ と $\Omega$ の交点のうち $P$ でない方を $X$ ,線分 $AP$ と $\Omega$ の交点のうち $P$ でない方を $Y$ ,直線 $AX$ と $\Gamma$ の交点のうち $A$ でない方を $Z$ とすると以下が成立しました.
$$XY=3,\quad XZ=15,\quad PY=10$$

このとき線分 $AM$ の長さは互いに素な正の整数 $a,b$ を用いて $\displaystyle \frac{a}{b}$と表されるので $a+b$ を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(H)

MrKOTAKE 自動ジャッジ 難易度:
2月前

45

問題文

$AB=15,AC=20$ の鋭角三角形 $ABC$ があり,辺 $AC$ 上に $AB=AD$ となる点 $D$ をとります.線分 $BD$ の中点を $M$ とすると三角形 $ADM$ の外接円は直線 $CM$ に点 $M$ で接したので線分 $BC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

問題12

Mid_math28 自動ジャッジ 難易度:
12日前

19

問題文

ある三角形は内接円の半径が $9$、外接円の半径が $25$、傍接円の一つの半径が $\sqrt{2025}$ です。この三角形の面積を求めてください

解答形式

解答は正の整数値になるので、その値を解答してください。