Bar Chart

aa36 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月17日10:35 正解数: 6 / 解答数: 13 (正答率: 46.2%) ギブアップ不可
組み合わせ

全 13 件

回答日時 問題 解答者 結果
2026年2月18日2:34 Bar Chart MACHICO
正解
2026年1月8日18:49 Bar Chart puratoku
正解
2026年1月8日18:45 Bar Chart puratoku
不正解
2026年1月5日9:40 Bar Chart tomorunn
正解
2026年1月5日9:40 Bar Chart tomorunn
不正解
2026年1月5日9:36 Bar Chart tomorunn
不正解
2026年1月5日9:32 Bar Chart tomorunn
不正解
2026年1月5日9:31 Bar Chart tomorunn
不正解
2025年12月3日10:57 Bar Chart GaLLium31
正解
2025年8月18日6:01 Bar Chart Nyarutann
正解
2025年8月18日5:59 Bar Chart Nyarutann
不正解
2025年8月17日15:02 Bar Chart Nyaru
不正解
2025年8月17日14:40 Bar Chart 65
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題

roku_omc 自動ジャッジ 難易度:
46日前

6

問題文

$30! \pmod{31\times30\times 29^2}$ の値を求めてください.

解答形式

半角の整数で入力してください.

没問2

mani 自動ジャッジ 難易度:
48日前

9

$m^{n+1}+n^m+1=2026$ を満たす正整数の組 $(m,n)$ を全てについて,$mn$の総和を求めてください.

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
6月前

5

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

200C

Nyarutann 自動ジャッジ 難易度:
6月前

5

問題文

$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.

  • $3$ 項の順番を並び替えることで等差数列になる.

例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

OMCE011B?

uran 自動ジャッジ 難易度:
6月前

9

問題文

$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,

・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個

ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)

解答形式

半角数字で解答してください.

整数問題2

mathken 自動ジャッジ 難易度:
51日前

14

問題文

以下の二つの等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$\begin{cases} a-b=3c \\ a^3-b^3-c^3=c^5 \end{cases}$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

京大作サーマスガチャ2025 - SR22

Kta 自動ジャッジ 難易度:
2月前

20

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

問題3

Youteru 自動ジャッジ 難易度:
2月前

34

2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。

条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。

44日前

7

問題文

$m,n$を整数とします。
$$(m+n)!+2025^{{n}^{m}}=2026^{mn+1}$$
を満たす組$(m,n)$について、$mn$の総積を求めてください。

解答形式

半角数字で入力してください。

没問

poino 自動ジャッジ 難易度:
17月前

5

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

第2回琥珀杯 D

Clea 自動ジャッジ 難易度:
10月前

10

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

n進数

mathken 自動ジャッジ 難易度:
51日前

8

問題文

$n>10$ とする。
$n$ 進法で $2026_{(n)}$ と表される自然数が $2026$ で割り切れるような自然数 $n$ を小さいものから $3$ つ足し合わせた数を答えよ。

必要なら $1013$ は素数であること、 $m^2 \equiv 937 \pmod {1013}$ を満たす $1013$ 以下の自然数 $m$ は $2$ つのみで、その $1$ つが $472$ であることを用いてよい。