$実数全体で定義され、実数値を取る定数でない関数f(x)がある。$ $この関数が任意の実数x,yについて恒等式$ $$f(x^2+y)=f(kx^2+2y)-f(3x^2)$$ $を満たすとき、定数kの値を求めよ。$
左辺と右辺に同じ形を作って項を消します。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
$x,y$を整数、$p$を素数とする。 $x^2-xy+y^2=2^p$を満たす組$(x,y,p)$をすべて求めよ。
$x+y+p$の値としてありうる値の総和を半角数字で入力してください。
$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、
$$ \mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}} $$
である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
必要であれば以下の事実を用いてよい。
・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式
$$ 1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2 $$
が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。
ア〜ソには、0から9までの数字または「-」(マイナス)が入る。 文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。 ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
$$ a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3) $$
$a_{10}$を求めなさい。
$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。
半角数字で$AB^2(=BC^2)$の値を入力してください。
正整数列 $A_{n}$ を以下のように定義する $$ 1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい $$ この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の 総和を $97$ で割った余りを答えてください。 ただし,並び替えて一致するものも別々として数える。 例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。
正整数で答えてください
$p$ を $p \ge 5$ なる素数とする。集合 $G_p = {1, 2, \dots, p-1}$ の部分集合 $S$ が自己双対的であるとは、 $$a \in S \implies a^{-1} \pmod p \in S \quad \text{かつ} \quad a \in S \implies p-a \in S$$ が全ての $a \in S$ に対して成り立つことと定義する(ここで $a^{-1}$ は $\pmod p$ における $a$ の乗法逆元)。
$N_p$ を、$G_p$ の自己双対的な部分集合 $S$ の総数とする(空集合 $\emptyset$ も含む)。
$N_p = 32$ となるような素数 $p$ ($p \ge 5$) をすべて求めよ。
解を半角1スペースおきに小さい順に並べてください
$(1)$ 方程式 $12x^2+4xy-21y^2=32x-32y+3$ の整数解 $(x,y)$ を求めよ. $(2)$ 不等式 $z^2\lt a(a+1)z-a^3$ の奇数解 $z$ が二つとなる実数 $a$ の範囲を求めよ.
$a^{xy}$ がとりうる整数の和を半角数字で入力してください.
互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。 $L^2=kS$ ($k$ は正の整数) を満たすとき、 全てのkの値を求めよ。
半角1スペースおきに小さい順に並べてください
n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。 $$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$ ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。 $$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
$ω=e^{\frac{2πi}{7}}$を原始 7 乗根とする$A=ω+ω 2 +ω 4$および$B=ω 3 +ω 5 +ω 6$ とおくとき、$A^3 +B^3$ の値を求めよ。
半角英数字入力してください。
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。