(A)

sembri 自動ジャッジ 難易度: 数学 > 中学数学
2025年12月26日14:49 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ不可

全 5 件

回答日時 問題 解答者 結果
2026年1月8日20:04 (A) puratoku
正解
2025年12月31日9:27 (A) ゲスト
正解
2025年12月30日0:52 (A) Kta
正解
2025年12月28日8:37 (A) mathken
正解
2025年12月26日18:49 (A) Not_here
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題 等式

reito 自動ジャッジ 難易度:
18日前

8

問題文

x,y,zを自然数とする。
xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。

解答形式

数字のみを記入すること。例:3組ある場合は 3

31日前

4

問題文

以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします.
$$x^{100}+x^{99}+2025x+12=0$$

このとき,以下の値を求めてください.
$$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの14番の問題と同じです.

31日前

4

問題文

以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします.
$$x^3-2^{2025}x^2+24x-2^{2023}=0$$

このとき,以下の値は整数になるので,その正の約数の個数を求めてください.
$$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$

解答形式

整数で解答してください.

補足

https://x.com/atwr0711/status/2000173940698927172?s=20
こちらの31番の問題と同じです.

2026記念問題

kiwiazarashi 自動ジャッジ 難易度:
16日前

14

問題文

ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。

・くじは2026本あり、それぞれに運勢が1つ書いてある。
・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。
・(大吉の本数):(中吉の本数)=5:7
・(中吉の本数):(小吉の本数)=9:11
・(小吉の本数):(凶の本数)=7:4
・(凶の本数):(大凶の本数)=11:8
・(吉の本数):(平の本数)=5:2

平の本数を求めてください。

解答形式

答えの数字を半角数字で入力してください。

雑談

ここ3年ぐらい吉しか引いてないです。
(追記)今年も吉だったので4年連続です。

連立方程式 応用

reito 自動ジャッジ 難易度:
13日前

2

問題文

ab-3c-d^2 = e …①
3cd+d^2+e^2 = abd …②
a+8+2d = b …③
a+11+e = b+3 …④
を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。

解答形式

a+b+c+d+e の値を半角数字で

最大最小問題①

MACHICO 自動ジャッジ 難易度:
2月前

6

問題文

正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,

$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$

の最大値を求めてください.

解答形式

求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.

ハロウィン図形 🕸️

smasher 自動ジャッジ 難易度:
2月前

8

問題文

正$10$角形が半径$31$の円に内接している。
正$10$角形の面積を求めよ。

解答形式

正$10$角形の面積は互いに素な正整数$a,b$及び正整数$c$と平方因子をもたない正整数$d$を用いて$\dfrac{b\sqrt{c-2\sqrt{d}}}{a}$と表されるので、$a+b+c+d$の値を半角数字で入力してください。

ハロウィン整数 🐈‍⬛

smasher 自動ジャッジ 難易度:
2月前

11

問題文

$x,y$を非負整数とする。
$10x+31y=1031$
を満たす組$(x,y)$をすべて求めよ。

誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。

解答形式

組$(x,y)$について、$x+y$の総和を半角数字で入力してください。

KOTAKE杯001没問①

MrKOTAKE 自動ジャッジ 難易度:
16月前

4

問題文

三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

9月前

5

問題文

四角形$ABCD$があり、次の条件を満たします。

$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$

この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。

解答形式

半角数字で答えをそのまま入力。

余談

問題に不備等あればtwitterのDMなどで気軽にお願いします。
Tex初めて使いました。
問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…


問題文

次の連立方程式において、x,yの値を求めよ
ただし、x>yとする
4x²+4x-4y²=-1
x²+6x+6y=61

解答形式

すべて半角でx=◯,y=◯と入力
分数は分子/分母と入力
例 x=1,y=-1/3

余りを求める

mathken 自動ジャッジ 難易度:
20日前

7

問題文

$86^{48}-64$ を $864$ で割った余りを求めよ。