Happy New Year!

noname 自動ジャッジ 難易度: 数学 > 高校数学
2026年1月1日12:07 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ数: 0
整数問題

全 2 件

回答日時 問題 解答者 結果
2026年1月1日17:39 Happy New Year! crambon
正解
2026年1月1日14:28 Happy New Year! mathken
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

2026記念問題

kiwiazarashi 自動ジャッジ 難易度:
19時間前

8

問題文

ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。

・くじは2026本あり、それぞれに運勢が1つ書いてある。
・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。
・(大吉の本数):(中吉の本数)=5:7
・(中吉の本数):(小吉の本数)=9:11
・(小吉の本数):(凶の本数)=7:4
・(凶の本数):(大凶の本数)=11:8
・(吉の本数):(平の本数)=5:2

平の本数を求めてください。

解答形式

答えの数字を半角数字で入力してください。

雑談

ここ3年ぐらい吉しか引いてないです。

整数問題 等式

reito 自動ジャッジ 難易度:
3日前

6

問題文

x,y,zを自然数とする。
xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。

解答形式

数字のみを記入すること。例:3組ある場合は 3

魔法陣

mathken 自動ジャッジ 難易度:
4日前

3

問題文

実数 $a,b,c$ がこの順に等差数列となっている。 $3\times3$ のマス一つずつに $a,b,c$ を自由に配置したとき、縦横斜め一列に並ぶ $3$ 数の和が一致する列の組が必ず存在するか。

解答形式

必ず存在するならば $1$ 、必ずしも存在しないならば $0$ と答えてください。

整数問題3

mathken 自動ジャッジ 難易度:
19時間前

3

問題文

以下の等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$a^b(c-1)+a+c=2^{bc-1}-a-b=2026$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

面積比

taku1729 自動ジャッジ 難易度:
8月前

6

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。

整数問題4

mathken 自動ジャッジ 難易度:
19時間前

3

問題文

$0<m<n$ とする。以下の等式を満たす自然数 $m,n$ を全て求めよ。
$$\frac{(m+n-1)^4-(m+n-2)^4+m-n+1}{4(m+n-1)+m-n}=2026$$

解答形式

$m,n$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2
12,34

整数問題2

mathken 自動ジャッジ 難易度:
19時間前

3

問題文

以下の二つの等式を満たす自然数 $a,b,c$ の組を全て求めよ。
$$\begin{cases} a-b=3c \\ a^3-b^3-c^3=c^5 \end{cases}$$

解答形式

$a,b,c$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。


1,2,3
12,34,56

幾何

katsuo_temple 自動ジャッジ 難易度:
4月前

9

問題文

三角形$ABC$において,$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とし,垂心を$H$とします.三角形$DEF$の外接円と三角形$HBC$の外接円の交点を$P,Q$とし,$EF$の中点を$M$とします.直線$HM$と直線$PQ$の交点を$R$とすると,$DR$は$AB$の中点を通り,$BC$の中点を$N$とすると,$$ND=2 CE=5$$が成立しました.このとき,$AB$の長さの二乗は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a +b$の値を解答して下さい.

解答形式

半角で解答して下さい.

(A)

sembri 自動ジャッジ 難易度:
6日前

6

問題文

正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。

n進数

mathken 自動ジャッジ 難易度:
19時間前

4

問題文

$n>10$ とする。
$n$ 進法で $2026_{(n)}$ と表される自然数が $2026$ で割り切れるような自然数 $n$ を小さいものから $3$ つ足し合わせた数を答えよ。

必要なら $1013$ は素数であること、 $m^2 \equiv 937 \pmod {1013}$ を満たす $1013$ 以下の自然数 $m$ は $2$ つのみで、その $1$ つが $472$ であることを用いてよい。

柏陽祭2025 (G)

ulam_rasen 自動ジャッジ 難易度:
3月前

8

正三角形$ABC, DEF$について, 三点$A, F, E$がこの順に同一直線上に並んでいます. また, 線分$AD$と線分$BE$の交点が存在したのでこれを$X$とすると三点$F, C, X$はこの順に同一直線上に並びました. 直線$BC$と直線$AE$の交点を$Y$としたとき, 以下が成立しました.
$$
\angle CAE=\angle BEA, AD=AY, DX=1
$$
このとき, 線分$AD$の長さの値の最小多項式を$f$とします. $f(5)$の値を求めてください.


最小多項式とは

$m$を根にもつ有理数係数多項式のうち, 次数が最小であり, かつ最高次の係数が$1$であるものを(このようなものは一意に存在します), $m$の最小多項式とよびます.

19時間前

6

問題文

$2025^{2026}+2026^{2025}$ について以下の問いに答えよ。

$(1)$ $625$ で割った余りを求めよ。

$(2)$ 下 $4$ 桁の数を求めよ。

解答形式

答え二つを半角カンマ(,)で区切って答えてください。
例)123,456

追記:解答を修正しました。答えが合っているのに誤答判定された方は申し訳ございません。