因数分解

zyogamaya 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月2日9:48 正解数: 1 / 解答数: 1 (正答率: 100%) ギブアップ数: 0

問題文

$x^4+y^4+z^4+w^4+(x^2+y^2+z^2+w^2)(xy+xz+xw+yz+yw+zw)+4xyzw$
を因数分解せよ。

解答形式

TeXで入力してください。項の順番に関しては辞書式順で入力してください。字数の高い因数を先に書いてください。
例1:
$(x^2+y^2+z^2+w^2)(x+y+z+w)$と答えるには
(x^2+y^2+z^2+w^2)(x+y+z+w)を入力してください。
例2:
$x,y,z,w$から重複せず3文字を選び、かけ合わせた項4つを辞書式順に並べると
$xyz,xyw,xzw,yzw$


ヒント1

$f(t)=(t-x)(t-y)(t-z)(t-w)$を考えてみましょう。

ヒント2

$f(t)$は零点$t=x,y,z,w$を持つことを使いましょう。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求角問題6

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

問題

Kinmokusei 自動ジャッジ 難易度:
3年前

2

問題文

(2020.9.26 11:57追記)
解答形式に不備があったため、訂正致しました。

図の青、緑、赤の線分の長さを$X,Y,Z$、斜線部の面積を$S$とすると、次の式が成り立つ。
$$
\frac{[ア]}{S}=\frac{[イ]}{Z}\left(\frac{1}{X}+\frac{1}{Y}\right)
$$

なお、図の曲線は半円の弧である。

解答形式

$[ア],[イ]$にはともに自然数が入ります。その和を半角数字で解答してください。
ただし、その和が最小となるように解答してください。
例:$[ア]=4,[イ]=2$なら$6$ではなく(両辺を$2$で割ることにより)$3$と解答。

f(x)とは

aoneko 採点者ジャッジ 難易度:
2年前

11

問題文

≪aは定数とする。xの関数f(x)に対しf(a)とは、f(x)にx=aを代入した値である。例えば、f(x)=2xが与えられれば、f(2)の値は4となる≫

f(x)=3x−1についてf(a+1)をaを用いて表せ

連立する整数問題

aoneko 採点者ジャッジ 難易度:
2年前

3

問題文

$0$でない整数$x,y,z$について$A=xy−z,B=x-yz$と定める。$A+B=3,A-B=5$となるとき、$x,y,z$の値を求めよ

求長問題9

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

※2020.11.10 18:49 問題タイトルを修正しました。
(解答に影響はありません)

図中の線分ABの長さを求めてください。
緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。

解答形式

半角数字で解答してください。

平方数

zyogamaya 自動ジャッジ 難易度:
3年前

2

問題文

$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。

解答形式

例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は

12
134
5116

と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。

Roly Poly

halphy 自動ジャッジ 難易度:
3年前

2

問題文

$m$ と $n$ を互いに素な自然数とします.実数係数多項式 $f(x)$ が次の性質をもっているとき,$f(x)$ を $m,n$-生成の多項式と呼ぶことにします.

  • 性質:すべての実数係数多項式 $g(x)$に対して,$f(x)g(x)=h(x^m, x^n)$ となるような実数係数の2変数多項式 $h(x,y)$ が存在する.

$x^k$ がすべての $10,n$-生成の多項式を割り切るような最大の自然数 $k$ は


です.ただし,単項式も多項式に含まれるとします.

解答形式

センター試験方式です.ア,イ,ウにはそれぞれ 0,1,2,3,4,5,6,7,8,9 および -,a,b,c,d のいずれか1文字が当てはまります.ア,イ,ウに 1, 2, 3 が当てはまるなら,123 と回答してください.

求値問題2

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

$△ABC$は鋭角三角形とします。次に、$A,B,C$から$BC,CA,AB$におろした垂線の足をそれぞれ$X,Y,Z$とし、$△ABC,△XYZ$の内接円の半径をそれぞれ$r,r'$とします。このとき、次の式の最小値を求めてください。
$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}
$$

解答形式

$$
\frac{r}{r'}\cos{\frac A2}\cos{\frac B2}\cos{\frac C2}\geq\frac{[ア]\sqrt{[イ]}}{[ウ]}=(最小値)
$$
となります。$[ア]+[イ]+[ウ]$を半角数字で解答してください。
ただし、$[ア],[イ],[ウ]$には自然数が入ります。また、分数部分は既約分数に、根号内の数字は最小となるようにしてください。

[C]線形代数のよくある問題

fusshi 自動ジャッジ 難易度:
3年前

3

問題文

行列$A$を次で定義する。
$$
A=
\begin{pmatrix}
6& -3 & -7 & 0 & 0 & 0\\
-1 & 2 & 1 & 0 & 0 & 0\\
5& -3 & -6 & 0 & 0 & 0\\
0& 0 & 0 & 1 & 2 & 1\\
0& 0 & 0 & -1 & 4 & 1\\
0& 0 & 0 & 2 & -4 & 0\\
\end{pmatrix}
$$
このとき次の実線形空間の次元を求めよ。
$$
V=\{X\in M_{6}(\mathbb{R})\mid AX=XA\}
$$
ただし、$M_{6}(\mathbb{R})$とは6行6列の実正方行列全体の集合である。

解答形式

半角数字で答えよ。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
3年前

3

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
3年前

3

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

Vo Sequence

halphy 自動ジャッジ 難易度:
3年前

4

問題文

「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.


条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.


例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.

ボー文字列に対して,次の操作を行うことを考えます.


操作:ボー文字列に対して,次のうちいずれか一方を行う.

  • (A)文字列のどこか1ヶ所に長音記号「ー」を付け加える.
  • (B)文字列の末尾に「ボ」を付け加える.

ただし,得られた文字列はボー文字列でなければならない.


1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.

解答形式

半角数字で入力してください。