お問い合わせに関して (2023年3月26日13:07)
お問い合わせにおいて返答が必要な場合は、お送りの際に連絡先をご記入ください。最近送った記憶のある方は連絡先併記の上、再度お送りください。

求長問題7

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2020年9月13日19:56 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ数: 0

全 3 件

回答日時 問題 解答者 結果
2022年10月20日15:35 求長問題7 nzm
正解
2021年3月18日12:45 求長問題7 tima_C
正解
2020年9月22日22:48 求長問題7 mochimochi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求長問題12

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

長方形・正方形・円が図のように配置されています。赤で示した線分の長さが7、長方形の面積が12のとき、青い線分の長さとしてあり得るものを全て求めてください。

解答形式

解答は$\sqrt{\fbox {アイ}},\frac{\sqrt{\fbox{ウエオ}}}{\fbox カ}$となります。文字列「アイウエオカ」を解答してください。ただし、根号の中身が平方数の倍数とならないように解答してください。


【補助線主体の図形問題 #017】
 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正方形と2つの円

tb_lb 自動ジャッジ 難易度:
22月前

6

【補助線主体の図形問題 #015】
 今回は円がらみの求長問題にしてみました。地道なド根性解法もありますが、補助線次第では暗算も可能なように仕込んであります。お好みの解法・手法で挑戦してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求角問題7

Kinmokusei 自動ジャッジ 難易度:
2年前

5

問題文

図のように正五角形と正三角形が配置されています。緑の$x$で示した角度を求めてください。
なお、赤で示した2つの線分は長さが等しく、青で示した角は直角です。

解答形式

度数法で、単位を付けずに0以上180未満の数を半角数字で解答してください。

求長問題14

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

円と3本の弦

tb_lb 自動ジャッジ 難易度:
21月前

10

【補助線主体の図形問題 #019】
 1週空いての久しぶりの出題となりました。今回はガリガリ長さを求める解法から暗算解法まで解法の種類多めとなっています。腕に覚えのある方は暗算解法だけでなく、解法の数にも挑戦してもらえたら嬉しいです!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求長問題24

Kinmokusei 自動ジャッジ 難易度:
20月前

7

問題文

半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。

解答形式

半角数字で解答してください。

長方形と2つの円

tb_lb 自動ジャッジ 難易度:
2年前

9

【補助線主体の図形問題 #003】
 先日から補助線を主体とした図形問題を投稿しています。先々週・先週と求積・求角とお送りしてきたので、今回は求長問題にしてみました。
 暗算で処理可能な解法もあります。補助線の世界をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

球を対称式で移す

masorata 自動ジャッジ 難易度:
2年前

6

問題文

実数 $a,b,c$ が $a^2+b^2+c^2\leqq 1$ を満たして動くとき、
座標空間上の点 $(a+b+c, ab+bc+ca, abc)$ が動く領域を $D$ とする。
以下の問いに答えよ。

⑴ $yz$ 平面に平行な平面 $\pi_t\colon \ x=t$ と $D$ が共有点を持つような実数 $t$ の範囲を求めよ。

⑵ $t$ が⑴で求めた範囲にあるとき、平面 $\pi_t$ と $D$ の共通部分を $E_t$ とする。
このとき、 ある $t$ の関数 $m(t), M(t)$ および $t$ と $y$ の関数 $p(t,y),q(t,y)$ が存在して、

$$
\begin{eqnarray}
E^1_t &=& \{ (x,y,z)|\ x=t,\ m(t) \leqq y \leqq M(t) \}\\
E^2_t &=& \{ (x,y,z)|\ x=t,\ z^2+p(t,y)z+q(t,y)\leqq0 \}
\end{eqnarray}
$$

とおけば $E_t = E^1_t \cap E^2_t $ と表せる。このような $m(t), M(t), p(t,y),q(t,y)$ を求めよ。

⑶ $E_t$ の面積を $S(t)$ とおく。$t$ が⑴で求めた範囲にあるとき、$S(t)$ を $t$ の式で表せ。 ただし、 $E_t$ がただ一点からなるときは $S(t)=0$ であるとする。

⑷ $D$ の体積 $V$ を求めよ。

解答形式

⑷のみ解答せよ。解は $V = \frac{\sqrt{(ア)}}{(イウ)}\pi$ と書ける。(ア)、(イウ)に当てはまる自然数をそれぞれ1,2行目に半角で入力せよ。ここでア,イ,ウの各文字には0から9までの整数のいずれかが入る。たとえば(ア)=3(イウ)=57 と解答する場合は、1行目に「3」、2行目に「57」と入力せよ。なお、根号の中身が最小になるように解答すること。

二等分2

okapin 自動ジャッジ 難易度:
2年前

3

問題文

$xy$平面において点$O$を中心とする単位円上に異なる2点を取り、それぞれ$P_0,Q$とする(ただし$P_0,O,Q$は一直線上にないものとする)。また、$\angle P_0OQ$のうち小さい方の角を$\theta$とする$(0<\theta<\pi)$。
これから、以下の操作を$i=1,2,3,…,n$について計$n$回行う。

(操作)
弧$P_{i-1}Q$のうち短い方の弧を2等分するような単位円上の点を$P_i$とし、$\triangle P_{i-1}P_iQ$の面積を$S_i$とする。

このとき、
$$S_i=\sin\frac{\theta}{\fbox{ア}^i}-\frac{1}{2} \sin\frac{\theta}{\fbox{イ}^{i-1}}$$となるので、
$$\sum_{i=1}^n2^{i-1}S_i=\frac{1}{2}\left(\fbox{ウ}^n\sin\frac{\theta}{\fbox{エ}^n}-\sin\theta\right)$$となる。ここで$n\to\infty$とすると
右辺の極限値は、
$$\frac{1}{2}(\theta-\sin\theta)$$となり扇形$P_0OQ$から$\triangle P_0OQ$を取り除いた図形の面積に収束することが分かる(図形的にも明らか)。

解答形式

$\fbox{ア}$~$\fbox{エ}$に入る整数を半角で1,2,…行目に入力してください。