初めて生やした問題

imhetep 自動ジャッジ 難易度: 数学 > 競技数学
2026年2月15日20:15 正解数: 0 / 解答数: 0 ギブアップ数: 0
初等幾何

問題文

鋭角三角形ABCにおいてAからBCに下ろした垂線の足をDとし, 三角形ABCの外接円と直線ADとの交点のうちAでない方をEとする.
外接円の中心をOとしたとき, 次が成り立った.

OD ⊥ BE
BD = 2, DC = 2√7

外接円の半径が4であるとき, 三角形ABCの面積を求めてください.

解答形式

正整数 a, bを用いてa + √bと表せるので, a + b の値を解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または