求値問題6

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2021年1月16日18:47 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ数: 0

全 5 件

回答日時 問題 解答者 結果
2025年5月17日0:36 求値問題6 Weskdohn
正解
2024年2月5日22:24 求値問題6 sdzzz
正解
2023年12月10日14:55 求値問題6 nmoon
正解
2023年11月15日19:11 求値問題6 naoperc
正解
2023年4月27日16:52 求値問題6 tima_C
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

4つの半円弧

tb_lb 自動ジャッジ 難易度:
3年前

3

【補助線主体の図形問題 #049】
 出題日の翌日である3月14日はその数の並びから「円周率の日」と定められています。ちょっと気が早いですが、円周率の日になぞらえて円周だけで構成された問題を用意してみました。タネがわかれば大した計算量ではないのですが、ちょっとした計算用紙があった方が安心して解けるかと思います。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

9

【補助線主体の図形問題 #022】
 まもなく迎える7月22日は、$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$ から「円周率近似値の日」とされています。今回は円周率近似値の日を少し先取りして円だけで構成された問題を用意しました。暗算解法もいつも通り用意しています。補助線と共にしばし図形問題をお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針
  2. 補助線の方針
  3. 補助線を活かす視点をぼんやりと
  4. ヒント3の続き

三角形と4つの傍接円

tb_lb 自動ジャッジ 難易度:
2年前

7

【補助線主体の図形問題 #093】
 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。

求面積問題26

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。

解答形式

半角数字で解答してください。

3年前

8

問題文

半円弧を組み合わせた以下の図について、緑で示した部分の面積を求めてください。
大きい半円の直径は6、小さい半円弧の直径は3であり、大きい半円の弧は灰色の点によって6等分されています。

解答形式

解答は $\dfrac{a}{b}\pi$ となるので、$a+b$ を解答してください。
ただし、$a,b$ は互いに素な正整数です。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

求長問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

6

問題文

扇形の内部に図のように線を引きました。赤い線分の長さが$2\sqrt 5$のとき、青い線分の長さを求めてください。

解答形式

半角数字で解答してください。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
4年前

6

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

3年前

11

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$a$ を半角数字で解答してください。

2024問題

noname 自動ジャッジ 難易度:
15月前

13

$a!+b!+5c^2=2024$となる自然数$a,b,c$の組$(a,b,c)$を全て求めよ。

**入力形式**
(a,b,c)=(1,1,1),(2,3,4),...というふうに半角で入力してください。区切る時は,を用いてください。(順不同)

求長問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。