n を正の整数とし、$p$ を素数とする。$n!$ の素因数分解における $p$ の指数を $E_p(n!) = \sum_{k=1}^{\infty} \lfloor \frac{n}{p^k} \rfloor$ とする。
量 $Q_n$ を次のように定義する。
$$ Q_n = \sum_{p \le n} \left( \frac{n}{p-1} - E_p(n!) \right) \log p $$
ただし、和は $n$ 以下の全ての素数 $p$ を走り、$\log$ は自然対数とする。
次の極限値を求めよ。
$$ \lim_{n \to \infty} \frac{Q_n}{n} $$
ただし、オイラー・マスケロー二定数を $γ$ とする。
半角で
九点円中心を$N$とする鋭角三角形$ABC$において,$BN$と$AC$の交点を$P$,$CN$と$AB$の交点を$Q$とする.直線$AC$に関して$B$と対称な点を$B'$,直線$AB$に関して$C$と対称な点を$C’$とし,$B'Q$と$C'P$の交点を$X$とするとき,以下が成立しました.$$\angle BAX=\angle NAX \tan\angle ACB=\frac{5}{6} AB=10$$このとき,三角形$ABC$の面積を求めて下さい.
半角で解答して下さい.
SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました.
ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半角数字で入力して下さい.
NK君は誕生日を迎えました。
そのことを友達のGW君に伝えようと思っています。
そのまま言っては面白くないので、日付についてこう述べることにしました。
「僕の誕生日は、月と日をくっつけると、179の倍数になるよ」
NK君の誕生日を求めて下さい。
半角数字で値を入力して下さい(/も忘れずに)
幾つか例を置いておきます.
1月1日⇒1/1
12月1日⇒12/1
1月12日⇒1/12
12月12日⇒12/12
聖くんと光くんはトランプゲームを行うことにした.
なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)
今年でSKG学院の学園祭は第$66$回を迎えます.また今年度は $2025$ 年です.
さて、$0,2,5$ のみを用いた数式の内,答えが $66$ となるようなものを一つ求めてください.
但し,演算子($+, -, \times$ など)は自由に用いて良いものとします.
一例:
$\left( (2 \times 0 \times 2 \times 5)! + (2 \times 0 \times 2 \times 5)! \right) \times \left( 2^2 + 0^2 + 2^2 + 5^2 \right) = (1+1) \times 33 = 66$
式と答えを省略無しで入力して下さい.また,上の例とは違うものをお願いします.